Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Diabetes Care ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861550

RESUMEN

OBJECTIVE: To characterize distinct islet autoantibody profiles preceding stage 3 type 1 diabetes. RESEARCH DESIGN AND METHODS: The T1DI (Type 1 Diabetes Intelligence) study combined data from 1,845 genetically susceptible prospectively observed children who were positive for at least one islet autoantibody: insulin autoantibody (IAA), GAD antibody (GADA), or islet antigen 2 antibody (IA-2A). Using a novel similarity algorithm that considers an individual's temporal autoantibody profile, age at autoantibody appearance, and variation in the positivity of autoantibody types, we performed an unsupervised hierarchical clustering analysis. Progression rates to diabetes were analyzed via survival analysis. RESULTS: We identified five main clusters of individuals with distinct autoantibody profiles characterized by seroconversion age and sequence of appearance of the three autoantibodies. The highest 5-year risk from first positive autoantibody to type 1 diabetes (69.9%; 95% CI 60.0-79.2) was observed in children who first developed IAA in early life (median age 1.6 years) followed by GADA (1.9 years) and then IA-2A (2.1 years). Their 10-year risk was 89.9% (95% CI 81.9-95.4). A high 5-year risk was also found in children with persistent IAA and GADA (39.1%) and children with persistent GADA and IA-2A (30.9%). A lower 5-year risk (10.5%) was observed in children with a late appearance of persistent GADA (6.1 years). The lowest 5-year diabetes risk (1.6%) was associated with positivity for a single, often reverting, autoantibody. CONCLUSIONS: The novel clustering algorithm identified children with distinct islet autoantibody profiles and progression rates to diabetes. These results are useful for prediction, selection of individuals for prevention trials, and studies investigating various pathways to type 1 diabetes.

2.
Nat Commun ; 15(1): 4304, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773065

RESUMEN

Increased left atrial volume and decreased left atrial function have long been associated with atrial fibrillation. The availability of large-scale cardiac magnetic resonance imaging data paired with genetic data provides a unique opportunity to assess the genetic contributions to left atrial structure and function, and understand their relationship with risk for atrial fibrillation. Here, we use deep learning and surface reconstruction models to measure left atrial minimum volume, maximum volume, stroke volume, and emptying fraction in 40,558 UK Biobank participants. In a genome-wide association study of 35,049 participants without pre-existing cardiovascular disease, we identify 20 common genetic loci associated with left atrial structure and function. We find that polygenic contributions to increased left atrial volume are associated with atrial fibrillation and its downstream consequences, including stroke. Through Mendelian randomization, we find evidence supporting a causal role for left atrial enlargement and dysfunction on atrial fibrillation risk.


Asunto(s)
Fibrilación Atrial , Aprendizaje Profundo , Estudio de Asociación del Genoma Completo , Atrios Cardíacos , Humanos , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/genética , Fibrilación Atrial/diagnóstico por imagen , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética , Análisis de la Aleatorización Mendeliana , Factores de Riesgo , Función del Atrio Izquierdo/fisiología , Volumen Sistólico , Accidente Cerebrovascular , Reino Unido/epidemiología , Sitios Genéticos , Predisposición Genética a la Enfermedad
3.
Nat Med ; 30(6): 1749-1760, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806679

RESUMEN

Fibrotic diseases affect multiple organs and are associated with morbidity and mortality. To examine organ-specific and shared biologic mechanisms that underlie fibrosis in different organs, we developed machine learning models to quantify T1 time, a marker of interstitial fibrosis, in the liver, pancreas, heart and kidney among 43,881 UK Biobank participants who underwent magnetic resonance imaging. In phenome-wide association analyses, we demonstrate the association of increased organ-specific T1 time, reflecting increased interstitial fibrosis, with prevalent diseases across multiple organ systems. In genome-wide association analyses, we identified 27, 18, 11 and 10 independent genetic loci associated with liver, pancreas, myocardial and renal cortex T1 time, respectively. There was a modest genetic correlation between the examined organs. Several loci overlapped across the examined organs implicating genes involved in a myriad of biologic pathways including metal ion transport (SLC39A8, HFE and TMPRSS6), glucose metabolism (PCK2), blood group antigens (ABO and FUT2), immune function (BANK1 and PPP3CA), inflammation (NFKB1) and mitosis (CENPE). Finally, we found that an increasing number of organs with T1 time falling in the top quintile was associated with increased mortality in the population. Individuals with a high burden of fibrosis in ≥3 organs had a 3-fold increase in mortality compared to those with a low burden of fibrosis across all examined organs in multivariable-adjusted analysis (hazard ratio = 3.31, 95% confidence interval 1.77-6.19; P = 1.78 × 10-4). By leveraging machine learning to quantify T1 time across multiple organs at scale, we uncovered new organ-specific and shared biologic pathways underlying fibrosis that may provide therapeutic targets.


Asunto(s)
Fibrosis , Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Persona de Mediana Edad , Aprendizaje Automático , Anciano , Páncreas/patología , Páncreas/diagnóstico por imagen , Especificidad de Órganos/genética , Riñón/patología , Hígado/patología , Hígado/metabolismo , Miocardio/patología , Miocardio/metabolismo , Adulto
4.
J Patient Saf ; 20(4): 247-251, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38470958

RESUMEN

OBJECTIVE: The COVID-19 pandemic presented a challenge to inpatient safety. It is unknown whether there were spillover effects due to COVID-19 into non-COVID-19 care and safety. We sought to evaluate the changes in inpatient Agency for Healthcare Research and Quality patient safety indicators (PSIs) in the United States before and during the first surge of the pandemic among patients admitted without COVID-19. METHODS: We analyzed trends in PSIs from January 2019 to June 2020 in patients without COVID-19 using data from IBM MarketScan Commercial Database. We included members of employer-sponsored or Medicare supplemental health plans with inpatient, non-COVID-19 admissions. The primary outcomes were risk-adjusted composite and individual PSIs. RESULTS: We analyzed 1,869,430 patients admitted without COVID-19. Among patients without COVID-19, the composite PSI score was not significantly different when comparing the first surge (Q2 2020) to the prepandemic period (e.g., Q2 2020 score of 2.46 [95% confidence interval {CI}, 2.34-2.58] versus Q1 2020 score of 2.37 [95% CI, 2.27-2.46]; P = 0.22). Individual PSIs for these patients during Q2 2020 were also not significantly different, except in-hospital fall with hip fracture (e.g., Q2 2020 was 3.42 [95% CI, 3.34-3.49] versus Q4 2019 was 2.45 [95% CI, 2.40-2.50]; P = 0.01). CONCLUSIONS: The first surge of COVID-19 was not associated with worse inpatient safety for patients without COVID-19, highlighting the ability of the healthcare system to respond to the initial surge of the pandemic.


Asunto(s)
COVID-19 , Seguridad del Paciente , Indicadores de Calidad de la Atención de Salud , Humanos , COVID-19/epidemiología , Estados Unidos/epidemiología , Seguridad del Paciente/estadística & datos numéricos , Indicadores de Calidad de la Atención de Salud/estadística & datos numéricos , Femenino , Masculino , SARS-CoV-2 , Persona de Mediana Edad , Pandemias , Adulto , Anciano
6.
J Am Coll Cardiol ; 81(14): 1320-1335, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37019578

RESUMEN

BACKGROUND: As the largest conduit vessel, the aorta is responsible for the conversion of phasic systolic inflow from ventricular ejection into more continuous peripheral blood delivery. Systolic distention and diastolic recoil conserve energy and are enabled by the specialized composition of the aortic extracellular matrix. Aortic distensibility decreases with age and vascular disease. OBJECTIVES: In this study, we sought to discover epidemiologic correlates and genetic determinants of aortic distensibility and strain. METHODS: We trained a deep learning model to quantify thoracic aortic area throughout the cardiac cycle from cardiac magnetic resonance images and calculated aortic distensibility and strain in 42,342 UK Biobank participants. RESULTS: Descending aortic distensibility was inversely associated with future incidence of cardiovascular diseases, such as stroke (HR: 0.59 per SD; P = 0.00031). The heritabilities of aortic distensibility and strain were 22% to 25% and 30% to 33%, respectively. Common variant analyses identified 12 and 26 loci for ascending and 11 and 21 loci for descending aortic distensibility and strain, respectively. Of the newly identified loci, 22 were not significantly associated with thoracic aortic diameter. Nearby genes were involved in elastogenesis and atherosclerosis. Aortic strain and distensibility polygenic scores had modest effect sizes for predicting cardiovascular outcomes (delaying or accelerating disease onset by 2%-18% per SD change in scores) and remained statistically significant predictors after accounting for aortic diameter polygenic scores. CONCLUSIONS: Genetic determinants of aortic function influence risk for stroke and coronary artery disease and may lead to novel targets for medical intervention.


Asunto(s)
Enfermedades de la Aorta , Accidente Cerebrovascular , Humanos , Aorta Torácica , Aorta , Enfermedades de la Aorta/patología , Imagen por Resonancia Magnética
7.
Nat Commun ; 14(1): 2436, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37105979

RESUMEN

A fundamental challenge in diagnostics is integrating multiple modalities to develop a joint characterization of physiological state. Using the heart as a model system, we develop a cross-modal autoencoder framework for integrating distinct data modalities and constructing a holistic representation of cardiovascular state. In particular, we use our framework to construct such cross-modal representations from cardiac magnetic resonance images (MRIs), containing structural information, and electrocardiograms (ECGs), containing myoelectric information. We leverage the learned cross-modal representation to (1) improve phenotype prediction from a single, accessible phenotype such as ECGs; (2) enable imputation of hard-to-acquire cardiac MRIs from easy-to-acquire ECGs; and (3) develop a framework for performing genome-wide association studies in an unsupervised manner. Our results systematically integrate distinct diagnostic modalities into a common representation that better characterizes physiologic state.


Asunto(s)
Sistema Cardiovascular , Estudio de Asociación del Genoma Completo , Corazón/diagnóstico por imagen , Sistema Cardiovascular/diagnóstico por imagen , Electrocardiografía , Aprendizaje
8.
Nat Genet ; 55(5): 777-786, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081215

RESUMEN

Myocardial interstitial fibrosis is associated with cardiovascular disease and adverse prognosis. Here, to investigate the biological pathways that underlie fibrosis in the human heart, we developed a machine learning model to measure native myocardial T1 time, a marker of myocardial fibrosis, in 41,505 UK Biobank participants who underwent cardiac magnetic resonance imaging. Greater T1 time was associated with diabetes mellitus, renal disease, aortic stenosis, cardiomyopathy, heart failure, atrial fibrillation, conduction disease and rheumatoid arthritis. Genome-wide association analysis identified 11 independent loci associated with T1 time. The identified loci implicated genes involved in glucose transport (SLC2A12), iron homeostasis (HFE, TMPRSS6), tissue repair (ADAMTSL1, VEGFC), oxidative stress (SOD2), cardiac hypertrophy (MYH7B) and calcium signaling (CAMK2D). Using a transforming growth factor ß1-mediated cardiac fibroblast activation assay, we found that 9 of the 11 loci consisted of genes that exhibited temporal changes in expression or open chromatin conformation supporting their biological relevance to myofibroblast cell state acquisition. By harnessing machine learning to perform large-scale quantification of myocardial interstitial fibrosis using cardiac imaging, we validate associations between cardiac fibrosis and disease, and identify new biologically relevant pathways underlying fibrosis.


Asunto(s)
Cardiomiopatías , Estudio de Asociación del Genoma Completo , Humanos , Miocardio/patología , Corazón , Cardiomiopatías/genética , Cardiomiopatías/patología , Fibrosis
9.
Diabetes Care ; 46(10): 1753-1761, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36862942

RESUMEN

OBJECTIVE: To estimate the risk of progression to stage 3 type 1 diabetes based on varying definitions of multiple islet autoantibody positivity (mIA). RESEARCH DESIGN AND METHODS: Type 1 Diabetes Intelligence (T1DI) is a combined prospective data set of children from Finland, Germany, Sweden, and the U.S. who have an increased genetic risk for type 1 diabetes. Analysis included 16,709 infants-toddlers enrolled by age 2.5 years and comparison between groups using Kaplan-Meier survival analysis. RESULTS: Of 865 (5%) children with mIA, 537 (62%) progressed to type 1 diabetes. The 15-year cumulative incidence of diabetes varied from the most stringent definition (mIA/Persistent/2: two or more islet autoantibodies positive at the same visit with two or more antibodies persistent at next visit; 88% [95% CI 85-92%]) to the least stringent (mIA/Any: positivity for two islet autoantibodies without co-occurring positivity or persistence; 18% [5-40%]). Progression in mIA/Persistent/2 was significantly higher than all other groups (P < 0.0001). Intermediate stringency definitions showed intermediate risk and were significantly different than mIA/Any (P < 0.05); however, differences waned over the 2-year follow-up among those who did not subsequently reach higher stringency. Among mIA/Persistent/2 individuals with three autoantibodies, loss of one autoantibody by the 2-year follow-up was associated with accelerated progression. Age was significantly associated with time from seroconversion to mIA/Persistent/2 status and mIA to stage 3 type 1 diabetes. CONCLUSIONS: The 15-year risk of progression to type 1 diabetes risk varies markedly from 18 to 88% based on the stringency of mIA definition. While initial categorization identifies highest-risk individuals, short-term follow-up over 2 years may help stratify evolving risk, especially for those with less stringent definitions of mIA.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Lactante , Humanos , Preescolar , Diabetes Mellitus Tipo 1/epidemiología , Autoinmunidad/genética , Estudios Prospectivos , Predisposición Genética a la Enfermedad , Autoanticuerpos , Progresión de la Enfermedad
10.
Nat Commun ; 14(1): 266, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650173

RESUMEN

For any given body mass index (BMI), individuals vary substantially in fat distribution, and this variation may have important implications for cardiometabolic risk. Here, we study disease associations with BMI-independent variation in visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) fat depots in 40,032 individuals of the UK Biobank with body MRI. We apply deep learning models based on two-dimensional body MRI projections to enable near-perfect estimation of fat depot volumes (R2 in heldout dataset = 0.978-0.991 for VAT, ASAT, and GFAT). Next, we derive BMI-adjusted metrics for each fat depot (e.g. VAT adjusted for BMI, VATadjBMI) to quantify local adiposity burden. VATadjBMI is associated with increased risk of type 2 diabetes and coronary artery disease, ASATadjBMI is largely neutral, and GFATadjBMI is associated with reduced risk. These results - describing three metabolically distinct fat depots at scale - clarify the cardiometabolic impact of BMI-independent differences in body fat distribution.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Índice de Masa Corporal , Factores de Riesgo , Grasa Intraabdominal/diagnóstico por imagen , Grasa Intraabdominal/metabolismo , Adiposidad , Tejido Adiposo/diagnóstico por imagen , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/metabolismo
11.
Diabetologia ; 66(1): 93-104, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36195673

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to explore the utility of islet autoantibody (IAb) levels for the prediction of type 1 diabetes in autoantibody-positive children. METHODS: Prospective cohort studies in Finland, Germany, Sweden and the USA followed 24,662 children at increased genetic or familial risk of developing islet autoimmunity and diabetes. For the 1403 who developed IAbs (523 of whom developed diabetes), levels of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA) and insulinoma-associated antigen-2 (IA-2A) were harmonised for analysis. Diabetes prediction models using multivariate logistic regression with inverse probability censored weighting (IPCW) were trained using 10-fold cross-validation. Discriminative power for disease was estimated using the IPCW concordance index (C index) with 95% CI estimated via bootstrap. RESULTS: A baseline model with covariates for data source, sex, diabetes family history, HLA risk group and age at seroconversion with a 10-year follow-up period yielded a C index of 0.61 (95% CI 0.58, 0.63). The performance improved after adding the IAb positivity status for IAA, GADA and IA-2A at seroconversion: C index 0.72 (95% CI 0.71, 0.74). Using the IAb levels instead of positivity indicators resulted in even better performance: C index 0.76 (95% CI 0.74, 0.77). The predictive power was maintained when using the IAb levels alone: C index 0.76 (95% CI 0.75, 0.76). The prediction was better for shorter follow-up periods, with a C index of 0.82 (95% CI 0.81, 0.83) at 2 years, and remained reasonable for longer follow-up periods, with a C index of 0.76 (95% CI 0.75, 0.76) at 11 years. Inclusion of the results of a third IAb test added to the predictive power, and a suitable interval between seroconversion and the third test was approximately 1.5 years, with a C index of 0.78 (95% CI 0.77, 0.78) at 10 years follow-up. CONCLUSIONS/INTERPRETATION: Consideration of quantitative patterns of IAb levels improved the predictive power for type 1 diabetes in IAb-positive children beyond qualitative IAb positivity status.


Asunto(s)
Diabetes Mellitus Tipo 1 , Niño , Humanos , Estudios Prospectivos , Finlandia , Alemania , Autoanticuerpos
12.
Diabetes ; 71(12): 2632-2641, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36112006

RESUMEN

In our previous data-driven analysis of evolving patterns of islet autoantibodies (IAb) against insulin (IAA), GAD (GADA), and islet antigen 2 (IA-2A), we discovered three trajectories, characterized according to multiple IAb (TR1), IAA (TR2), or GADA (TR3) as the first appearing autoantibodies. Here we examined the evolution of IAb levels within these trajectories in 2,145 IAb-positive participants followed from early life and compared those who progressed to type 1 diabetes (n = 643) with those remaining undiagnosed (n = 1,502). With use of thresholds determined by 5-year diabetes risk, four levels were defined for each IAb and overlaid onto each visit. In diagnosed participants, high IAA levels were seen in TR1 and TR2 at ages <3 years, whereas IAA remained at lower levels in the undiagnosed. Proportions of dwell times (total duration of follow-up at a given level) at the four IAb levels differed between the diagnosed and undiagnosed for GADA and IA-2A in all three trajectories (P < 0.001), but for IAA dwell times differed only within TR2 (P < 0.05). Overall, undiagnosed participants more frequently had low IAb levels and later appearance of IAb than diagnosed participants. In conclusion, while it has long been appreciated that the number of autoantibodies is an important predictor of type 1 diabetes, consideration of autoantibody levels within the three autoimmune trajectories improved differentiation of IAb-positive children who progressed to type 1 diabetes from those who did not.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Niño , Humanos , Preescolar , Diabetes Mellitus Tipo 1/diagnóstico , Glutamato Descarboxilasa , Insulina , Autoanticuerpos
13.
JACC Adv ; 1(3)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36147540

RESUMEN

BACKGROUND: State-of-the-art genetic risk interpretation for a common complex disease such as coronary artery disease (CAD) requires assessment for both monogenic variants-such as those related to familial hypercholesterolemia-as well as the cumulative impact of many common variants, as quantified by a polygenic score. OBJECTIVES: The objective of the study was to describe a combined monogenic and polygenic CAD risk assessment program and examine its impact on patient understanding and changes to clinical management. METHODS: Study participants attended an initial visit in a preventive genomics clinic and a disclosure visit to discuss results and recommendations, primarily via telemedicine. Digital postdisclosure surveys and chart review evaluated the impact of disclosure. RESULTS: There were 60 participants (mean age 51 years, 37% women, 72% with no known CAD), including 30 (50%) referred by their cardiologists and 30 (50%) self-referred. Two (3%) participants had a monogenic variant pathogenic for familial hypercholesterolemia, and 19 (32%) had a high polygenic score in the top quintile of the population distribution. In a postdisclosure survey, both the genetic test report (in 80% of participants) and the discussion with the clinician (in 89% of participants) were ranked as very or extremely helpful in understanding the result. Of the 42 participants without CAD, 17 or 40% had a change in management, including statin initiation, statin intensification, or coronary imaging. CONCLUSIONS: Combined monogenic and polygenic assessments for CAD risk provided by preventive genomics clinics are beneficial for patients and result in changes in management in a significant portion of patients.

14.
J Gen Intern Med ; 37(15): 3979-3988, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36002691

RESUMEN

BACKGROUND: The first surge of the COVID-19 pandemic entirely altered healthcare delivery. Whether this also altered the receipt of high- and low-value care is unknown. OBJECTIVE: To test the association between the April through June 2020 surge of COVID-19 and various high- and low-value care measures to determine how the delivery of care changed. DESIGN: Difference in differences analysis, examining the difference in quality measures between the April through June 2020 surge quarter and the January through March 2020 quarter with the same 2 quarters' difference the year prior. PARTICIPANTS: Adults in the MarketScan® Commercial Database and Medicare Supplemental Database. MAIN MEASURES: Fifteen low-value and 16 high-value quality measures aggregated into 8 clinical quality composites (4 of these low-value). KEY RESULTS: We analyzed 9,352,569 adults. Mean age was 44 years (SD, 15.03), 52% were female, and 75% were employed. Receipt of nearly every type of low-value care decreased during the surge. For example, low-value cancer screening decreased 0.86% (95% CI, -1.03 to -0.69). Use of opioid medications for back and neck pain (DiD +0.94 [95% CI, +0.82 to +1.07]) and use of opioid medications for headache (DiD +0.38 [95% CI, 0.07 to 0.69]) were the only two measures to increase. Nearly all high-value care measures also decreased. For example, high-value diabetes care decreased 9.75% (95% CI, -10.79 to -8.71). CONCLUSIONS: The first COVID-19 surge was associated with receipt of less low-value care and substantially less high-value care for most measures, with the notable exception of increases in low-value opioid use.


Asunto(s)
COVID-19 , Anciano , Adulto , Femenino , Humanos , Estados Unidos/epidemiología , Masculino , COVID-19/epidemiología , COVID-19/terapia , Pandemias , Analgésicos Opioides/uso terapéutico , Medicare , Atención Ambulatoria
15.
NPJ Digit Med ; 5(1): 105, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896726

RESUMEN

Inter-individual variation in fat distribution is increasingly recognized as clinically important but is not routinely assessed in clinical practice, in part because medical imaging has not been practical to deploy at scale for this task. Here, we report a deep learning model trained on an individual's body shape outline-or "silhouette" -that enables accurate estimation of specific fat depots of interest, including visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes, and VAT/ASAT ratio. Two-dimensional coronal and sagittal silhouettes are constructed from whole-body magnetic resonance images in 40,032 participants of the UK Biobank and used as inputs for a convolutional neural network to predict each of these quantities. Mean age of the study participants is 65 years and 51% are female. A cross-validated deep learning model trained on silhouettes enables accurate estimation of VAT, ASAT, and GFAT volumes (R2: 0.88, 0.93, and 0.93, respectively), outperforming a comparator model combining anthropometric and bioimpedance measures (ΔR2 = 0.05-0.13). Next, we study VAT/ASAT ratio, a nearly body-mass index (BMI)-and waist circumference-independent marker of metabolically unhealthy fat distribution. While the comparator model poorly predicts VAT/ASAT ratio (R2: 0.17-0.26), a silhouette-based model enables significant improvement (R2: 0.50-0.55). Increased silhouette-predicted VAT/ASAT ratio is associated with increased risk of prevalent and incident type 2 diabetes and coronary artery disease independent of BMI and waist circumference. These results demonstrate that body silhouette images can estimate important measures of fat distribution, laying the scientific foundation for scalable population-based assessment.

16.
Sci Rep ; 12(1): 12542, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869152

RESUMEN

Prediction models are commonly used to estimate risk for cardiovascular diseases, to inform diagnosis and management. However, performance may vary substantially across relevant subgroups of the population. Here we investigated heterogeneity of accuracy and fairness metrics across a variety of subgroups for risk prediction of two common diseases: atrial fibrillation (AF) and atherosclerotic cardiovascular disease (ASCVD). We calculated the Cohorts for Heart and Aging in Genomic Epidemiology Atrial Fibrillation (CHARGE-AF) score for AF and the Pooled Cohort Equations (PCE) score for ASCVD in three large datasets: Explorys Life Sciences Dataset (Explorys, n = 21,809,334), Mass General Brigham (MGB, n = 520,868), and the UK Biobank (UKBB, n = 502,521). Our results demonstrate important performance heterogeneity across subpopulations defined by age, sex, and presence of preexisting disease, with fairly consistent patterns across both scores. For example, using CHARGE-AF, discrimination declined with increasing age, with a concordance index of 0.72 [95% CI 0.72-0.73] for the youngest (45-54 years) subgroup to 0.57 [0.56-0.58] for the oldest (85-90 years) subgroup in Explorys. Even though sex is not included in CHARGE-AF, the statistical parity difference (i.e., likelihood of being classified as high risk) was considerable between males and females within the 65-74 years subgroup with a value of - 0.33 [95% CI - 0.33 to - 0.33]. We also observed weak discrimination (i.e., < 0.7) and suboptimal calibration (i.e., calibration slope outside of 0.7-1.3) in large subsets of the population; for example, all individuals aged 75 years or older in Explorys (17.4%). Our findings highlight the need to characterize and quantify the behavior of clinical risk models within specific subpopulations so they can be used appropriately to facilitate more accurate, consistent, and equitable assessment of disease risk.


Asunto(s)
Aterosclerosis , Fibrilación Atrial , Enfermedades Cardiovasculares , Aterosclerosis/epidemiología , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Fibrilación Atrial/genética , Enfermedades Cardiovasculares/epidemiología , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo/métodos , Factores de Riesgo
17.
J Am Coll Cardiol ; 80(5): 486-497, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35902171

RESUMEN

BACKGROUND: The left ventricular outflow tract (LVOT) and ascending aorta are spatially complex, with distinct pathologies and embryologic origins. Prior work examined the genetics of thoracic aortic diameter in a single plane. OBJECTIVES: We sought to elucidate the genetic basis for the diameter of the LVOT, aortic root, and ascending aorta. METHODS: Using deep learning, we analyzed 2.3 million cardiac magnetic resonance images from 43,317 UK Biobank participants. We computed the diameters of the LVOT, the aortic root, and at 6 locations of ascending aorta. For each diameter, we conducted a genome-wide association study and generated a polygenic score. Finally, we investigated associations between these scores and disease incidence. RESULTS: A total of 79 loci were significantly associated with at least 1 diameter. Of these, 35 were novel, and most were associated with 1 or 2 diameters. A polygenic score of aortic diameter approximately 13 mm from the sinotubular junction most strongly predicted thoracic aortic aneurysm (n = 427,016; mean HR: 1.42 per SD; 95% CI: 1.34-1.50; P = 6.67 × 10-21). A polygenic score predicting a smaller aortic root was predictive of aortic stenosis (n = 426,502; mean HR: 1.08 per SD; 95% CI: 1.03-1.12; P = 5 × 10-6). CONCLUSIONS: We detected distinct genetic loci underpinning the diameters of the LVOT, aortic root, and at several segments of ascending aorta. We spatially defined a region of aorta whose genetics may be most relevant to predicting thoracic aortic aneurysm. We further described a genetic signature that may predispose to aortic stenosis. Understanding genetic contributions to proximal aortic diameter may enable identification of individuals at risk for aortic disease and facilitate prioritization of therapeutic targets.


Asunto(s)
Aneurisma , Aneurisma de la Aorta Torácica , Estenosis de la Válvula Aórtica , Aorta/diagnóstico por imagen , Aorta/patología , Aneurisma de la Aorta Torácica/diagnóstico , Aneurisma de la Aorta Torácica/epidemiología , Aneurisma de la Aorta Torácica/genética , Estenosis de la Válvula Aórtica/genética , Constricción Patológica , Estudio de Asociación del Genoma Completo , Humanos
18.
Nat Genet ; 54(6): 792-803, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35697867

RESUMEN

Congenital heart diseases often involve maldevelopment of the evolutionarily recent right heart chamber. To gain insight into right heart structure and function, we fine-tuned deep learning models to recognize the right atrium, right ventricle and pulmonary artery, measuring right heart structures in 40,000 individuals from the UK Biobank with magnetic resonance imaging. Genome-wide association studies identified 130 distinct loci associated with at least one right heart measurement, of which 72 were not associated with left heart structures. Loci were found near genes previously linked with congenital heart disease, including NKX2-5, TBX5/TBX3, WNT9B and GATA4. A genome-wide polygenic predictor of right ventricular ejection fraction was associated with incident dilated cardiomyopathy (hazard ratio, 1.33 per standard deviation; P = 7.1 × 10-13) and remained significant after accounting for a left ventricular polygenic score. Harnessing deep learning to perform large-scale cardiac phenotyping, our results yield insights into the genetic determinants of right heart structure and function.


Asunto(s)
Cardiomiopatía Dilatada , Cardiopatías Congénitas , Cardiomiopatía Dilatada/patología , Estudio de Asociación del Genoma Completo , Corazón , Humanos , Volumen Sistólico , Función Ventricular Derecha
19.
Pharmacoepidemiol Drug Saf ; 31(9): 944-952, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35689299

RESUMEN

With availability of voluminous sets of observational data, an empirical paradigm to screen for drug repurposing opportunities (i.e., beneficial effects of drugs on nonindicated outcomes) is feasible. In this article, we use a linked claims and electronic health record database to comprehensively explore repurposing effects of antihypertensive drugs. We follow a target trial emulation framework for causal inference to emulate randomized controlled trials estimating confounding adjusted effects of antihypertensives on each of 262 outcomes of interest. We then fit hierarchical models to the results as a form of postprocessing to account for multiple comparisons and to sift through the results in a principled way. Our motivation is twofold. We seek both to surface genuinely intriguing drug repurposing opportunities and to elucidate through a real application some study design decisions and potential biases that arise in this context.


Asunto(s)
Antihipertensivos , Reposicionamiento de Medicamentos , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Causalidad , Bases de Datos Factuales , Registros Electrónicos de Salud , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
20.
Nat Commun ; 13(1): 3771, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773277

RESUMEN

For any given level of overall adiposity, individuals vary considerably in fat distribution. The inherited basis of fat distribution in the general population is not fully understood. Here, we study up to 38,965 UK Biobank participants with MRI-derived visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes. Because these fat depot volumes are highly correlated with BMI, we additionally study six local adiposity traits: VAT adjusted for BMI and height (VATadj), ASATadj, GFATadj, VAT/ASAT, VAT/GFAT, and ASAT/GFAT. We identify 250 independent common variants (39 newly-identified) associated with at least one trait, with many associations more pronounced in female participants. Rare variant association studies extend prior evidence for PDE3B as an important modulator of fat distribution. Local adiposity traits (1) highlight depot-specific genetic architecture and (2) enable construction of depot-specific polygenic scores that have divergent associations with type 2 diabetes and coronary artery disease. These results - using MRI-derived, BMI-independent measures of local adiposity - confirm fat distribution as a highly heritable trait with important implications for cardiometabolic health outcomes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Grasa Intraabdominal , Tejido Adiposo , Adiposidad/genética , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Grasa Intraabdominal/diagnóstico por imagen , Grasa Intraabdominal/metabolismo , Obesidad/metabolismo , Grasa Subcutánea/diagnóstico por imagen , Grasa Subcutánea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...