Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Biotechnol ; 17(2): e14392, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38380951

RESUMEN

Biopreservation refers to the use of natural or controlled microbial single strains or consortia, and/or their metabolites such as short-chain carboxylic acids (SCCA), to improve the shelf-life of foods. This study aimed at establishing a novel Lactobacillaceae-driven bioprocess that led to the production of the SCCA propionate through the cross-feeding on 1,2-propanediol (1,2-PD) derived from the deoxyhexoses rhamnose or fucose. When grown as single cultures in Hungate tubes, strains of Lacticaseibacillus rhamnosus preferred fucose over rhamnose and produced 1,2-PD in addition to lactate, acetate, and formate, while Limosilactobacillus reuteri metabolized 1,2-PD into propionate, propanol and propanal. Loigolactobacillus coryniformis used fucose to produce 1,2-PD and only formed propionate when supplied with 1,2-PD. Fermentates collected from batch fermentations in bioreactor using two-strain consortia (L. rhamnosus and L. reuteri) or fed-batch fermentations of single strain cultures of L. coryniformis with rhamnose contained mixtures of SCCA consisting of mainly lactate and acetate and also propionate. Synthetic mixtures that contained SCCA at concentrations present in the fermentates were more antimicrobial against Salmonella enterica if propionate was present. Together, this study (i) demonstrates the potential of single strains and two-strain consortia to produce propionate in the presence of deoxyhexoses extending the fermentation metabolite profile of Lactobacillaceae, and (ii) emphasizes the potential of applying propionate-containing fermentates as biopreservatives.


Asunto(s)
Lactobacillaceae , Propionatos , Propionatos/metabolismo , Lactobacillaceae/metabolismo , Ramnosa/metabolismo , Fucosa , Fermentación , Acetatos , Lactatos
2.
Anim Biosci ; 35(2): 281-289, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34530518

RESUMEN

OBJECTIVE: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. METHODS: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4°C. RESULTS: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. CONCLUSION: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.

3.
Foods ; 10(9)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34574208

RESUMEN

Our previous studies indicated that Lactobacillus kefiranofaciens HL1, isolated from kefir grain, has strong antioxidant activities and anti-aging effects. However, this strain is difficult to use in isolation when manufacturing fermented products due to poor viability in milk. Thus, the purpose of this study was to apply a co-culture strategy to develop a novel probiotic fermented milk rich in L. kefiranofaciens HL1. Each of four selected starter cultures was co-cultured with kefir strain HL1 in different media to evaluate their effects on microbial activity and availability of milk fermentation. The results of a colony size test on de Man, Rogosa and Sharpe (MRS) agar agar, microbial viability, and acidification performance in MRS broth and skimmed milk suggested that Lactococcus lactis subsp. cremoris APL15 is a suitable candidate for co-culturing with HL1. We then co-cultured HL1 and APL15 in skimmed milk and report remarkable improvement in fermentation ability and no negative impact on the viability of strain HL1 or textural and rheological properties of the milk. Through a co-culture strategy, we have improved the viability of kefir strain HL1 in fermented skimmed milk products and successfully developed a novel milk product with a unique flavor and sufficient probiotics.

4.
J Dairy Sci ; 103(1): 141-149, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31629528

RESUMEN

The objective of this study was to develop a novel immobilized system using kefir lactic acid bacteria and sugar cane pieces for the production of fermented milk. Lactobacillus kefiranofaciens HL1, Lactobacillus kefiri HL2, Leuconostoc mesenteroides HL3, and Lactococcus lactis HL4 were isolated from Taiwanese kefir grains and immobilized on pieces of sugar cane using adsorption. Scanning electron micrographs of the cell-immobilized sugar cane pieces (CISCP) showed that the microorganisms were embedded within the porous structures of the sugar cane pieces. During 28 cycles of repeated batch fermentation, viable cells on both sugar cane pieces and fermented products were maintained at 10 log cfu/g (cfu/mL). Random amplified polymorphic DNA PCR analysis revealed that Leu. mesenteroides HL3 (29-43%) and Lc. lactis HL4 (31-49%) were predominant on the CISCP, and the fermented samples had 79% Lc. lactis HL4. When tracking fermentation parameters, the data on the microbial, chemical, and physical properties of the fermented milk suggested that the CISCP had stable fermentative ability over the course of successive fermentations. We found an enhancement of the acid-producing ability of CISCP as the number of fermentations increased, with a significant growth in titratable acidity from 0.65 to 0.81% by the end.


Asunto(s)
Productos Lácteos Cultivados/microbiología , Kéfir/microbiología , Lactobacillales/metabolismo , Lactobacillus/aislamiento & purificación , Leche/metabolismo , Saccharum , Animales , Células Inmovilizadas , Fermentación , Lactobacillales/aislamiento & purificación , Lactococcus lactis/aislamiento & purificación , Lactococcus lactis/metabolismo , Leuconostoc/aislamiento & purificación , Leche/química
5.
Nutrients ; 11(11)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752370

RESUMEN

Probiotics have been rapidly developed for health promotion, but clinical validation of the effects on exercise physiology has been limited. In a previous study, Lactobacillus plantarum TWK10 (TWK10), isolated from Taiwanese pickled cabbage as a probiotic, was demonstrated to improve exercise performance in an animal model. Thus, in the current study, we attempted to further validate the physiological function and benefits through clinical trials for the purpose of translational research. The study was designed as a double-blind placebo-controlled experiment. A total of 54 healthy participants (27 men and 27 women) aged 20-30 years without professional athletic training were enrolled and randomly allocated to the placebo, low (3 × 1010 colony forming units (CFU)), and high dose (9 × 1010 CFU) TWK10 administration groups (n = 18 per group, with equal sexes). The functional and physiological assessments were conducted by exhaustive treadmill exercise measurements (85% VO2max), and related biochemical indices were measured before and after six weeks of administration. Fatigue-associated indices, including lactic acid, blood ammonia, blood glucose, and creatinine kinase, were continuously monitored during 30 min of exercise and a 90 min rest period using fixed intensity exercise challenges (60% VO2max) to understand the physiological adaptation. The systemic inflammation and body compositions were also acquired and analyzed during the experimental process. The results showed that TWK10 significantly elevated the exercise performance in a dose-dependent manner and improved the fatigue-associated features correlated with better physiological adaptation. The change in body composition shifted in the healthy direction for TWK10 administration groups, especially for the high TWK10 dose group, which showed that body fat significantly decreased and muscle mass significantly increased. Taken together, our results suggest that TWK10 has the potential to be an ergogenic aid to improve aerobic endurance performance via physiological adaptation effects.


Asunto(s)
Composición Corporal , Tolerancia al Ejercicio , Ejercicio Físico , Microbioma Gastrointestinal , Lactobacillus plantarum/crecimiento & desarrollo , Aptitud Física , Probióticos/administración & dosificación , Adaptación Fisiológica , Adulto , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino , Taiwán , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...