Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1393266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812692

RESUMEN

Antimicrobial resistance (AMR) poses a significant global health threat as the silent pandemic. Because of the use of antimicrobials in aquaculture systems, fish farms may be potential reservoirs for the dissemination of antimicrobial resistance genes (ARGs). Treatments with disinfectants have been promoted to reduce the use of antibiotics; however, the effect of these types of treatments on AMR or ARGs is not well known. This study aimed to evaluate the effects of low dose ozone treatments (0.15 mg/L) on ARG dynamics in pond water using metagenomic shotgun sequencing analysis. The results suggested that ozone disinfection can increase the relative abundance of acquired ARGs and intrinsic efflux mediated ARGs found in the resistance nodulation cell division (RND) family. Notably, a co-occurrence of efflux and non-efflux ARGs within the same bacterial genera was also observed, with most of these genera dominating the bacterial population following ozone treatments. These findings suggest that ozone treatments may selectively favor the survival of bacterial genera harboring efflux ARGs, which may also have non-efflux ARGs. This study underscores the importance of considering the potential impacts of disinfection practices on AMR gene dissemination particularly in aquaculture settings where disinfectants are frequently used at low levels. Future endeavors should prioritize the evaluation of these strategies, as they may be associated with an increased risk of AMR in aquatic environments.

2.
Aquaculture ; 577: 739932, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38106988

RESUMEN

Microcystis sp. is a harmful cyanobacterial species commonly seen in earthen ponds. The overgrowth of these algae can lead to fluctuations in water parameters, including DO and pH. Also, the microcystins produced by these algae are toxic to aquatic animals. This study applied hydrogen peroxide (7 mg/L) to treat Microcystis sp. in a laboratory setting and in three earthen pond trials. In the lab we observed a 64.7% decline in Microcystis sp. And in our earthen pond field experiments we measured, on average, 43% reductions in Microcystis sp. cell counts within one hour. The treatment was found to eliminate specifically Microcystis sp. and did not reduce the cell count of the other algae species in the pond. A shift of the algae community towards the beneficial algae was also found post-treatment. Lastly, during the pond trials, the gill status of Tilapia and Giant tiger prawn were not affected by the H2O2 treatment suggesting this may be a good mitigation strategy for reducing cyanobacteria in pond aquaculture.

3.
Chemosphere ; 335: 139123, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37285986

RESUMEN

Laser-induced graphene (LIG) has gained popularity for electrochemical water disinfection due to its efficient antimicrobial activity when activated with low voltages. However, the antimicrobial mechanism of LIG electrodes is not yet fully understood. This study demonstrated an array of mechanisms working synergistically to inactivate bacteria during electrochemical treatment using LIG electrodes, including the generation of oxidants, changes in pH-specifically high alkalinity associated with the cathode, and electro-adsorption on the electrodes. All these mechanisms may contribute to the disinfection process when bacteria are close to the surface of the electrodes where inactivation was independent of the reactive chlorine species (RCS); however, RCS was likely responsible for the predominant cause of antibacterial effects in the bulk solution (i.e., ≥100 mL in our study). Furthermore, the concentration and diffusion kinetics of RCS in solution was voltage-dependent. At 6 V, RCS achieved a high concentration in water, while at 3 V, RCS was highly localized on the LIG surface but not measurable in water. Despite this, the LIG electrodes activated by 3 V achieved a 5.5-log reduction in Escherichia coli (E.coli) after 120-min electrolysis without detectable chlorine, chlorate, or perchlorate in the water, suggesting a promising system for efficient, energy-saving, and safe electro-disinfection.


Asunto(s)
Antiinfecciosos , Grafito , Purificación del Agua , Desinfección , Cloro/farmacología , Cloro/química , Grafito/farmacología , Antiinfecciosos/farmacología , Agua/farmacología , Bacterias , Electrodos , Escherichia coli
4.
Front Vet Sci ; 8: 689085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368276

RESUMEN

Copper-based fungicides have a long history of usage in agriculture and aquaculture. With the rapid development of metal-based nanoparticles, copper-based nanoparticles have attracted attention as a potential material for prevention and control of Saprolegnia parasitica. The present study investigated the effectiveness of copper/carbon core/shell nanoparticles (CCCSNs) and a commercial CCCSNs filter product (COPPERWARE®) against S. parasitica in a recirculating system. Results showed that the growth of agar plugs with mycelium was significantly suppressed after exposure to both CCCSNs powder and COPPERWARE® filters. Even the lowest concentration of CCCSNs used in our study (i.e., 100 mg/mL) exhibited significant inhibitory effects on S. parasitica. The smallest quantity of the filter product COPPERWARE® (3.75 × 3.7 × 1.2 cm, 2.58 g) used in our aquarium study also demonstrated significant inhibition compared with the control group. However, we observed leaching of copper into the water especially when larger quantities of COPPERWARE® were used. Water turbidity issues were also observed in tanks with the filter material. Besides these issues, which should be further investigated if the product is to be used on aquatic species sensitive to copper, CCCSNs has promising potential for water disinfection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA