Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(9): 609, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717026

RESUMEN

Botulinum toxin-A (BTX) administration into muscle is an established treatment for conditions with excessive muscle contraction. However, botulinum therapy has short-term effectiveness, and high-dose injection of BTX could induce neutralizing antibodies against BTX. Therefore, prolonging its effects could be beneficial in a clinical situation. Insulin-like growth factor-1 receptor (IGF1R) and its ligands, insulin-like growth factor (IGF) -I and II, regulate the physiological and pathological processes of the nervous system. It has been suggested that IGF1R is involved in the process after BTX administration, but the specific regeneration mechanism remains unclear. Therefore, this study aimed to determine how inhibition of IGF1R signaling pathway affects BTX-induced muscle paralysis. The results showed that anti-IGF1R antibody administration inhibited the recovery from BTX-induced neurogenic paralysis, and the synaptic components at the neuromuscular junction (NMJ), mainly post-synaptic components, were significantly affected by the antibody. In addition, the wet weight or frequency distribution of the cross-sectional area of the muscle fibers was regulated by IGF1R, and sequential antibody administration following BTX treatment increased the number of Pax7+-satellite cells in the gastrocnemius (GC) muscle, independent of NMJ recovery. Moreover, BTX treatment upregulated mammalian target of rapamycin (mTOR)/S6 kinase signaling pathway, HDAC4, Myog, Fbxo32/MAFbx/Atrogin-1 pathway, and transcription of synaptic components, but not autophagy. Finally, IGF1R inhibition affected only mTOR/S6 kinase translational signaling in the GC muscle. In conclusion, the IGF1R signaling pathway is critical for NMJ regeneration via specific translational signals. IGF1R inhibition could be highly beneficial in clinical practice by decreasing the number of injections and total dose of BTX due to the prolonged duration of the effect.


Asunto(s)
Toxinas Botulínicas , Factor I del Crecimiento Similar a la Insulina , Unión Neuromuscular , Fibras Musculares Esqueléticas , Anticuerpos Neutralizantes/farmacología
2.
Cancers (Basel) ; 13(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885013

RESUMEN

Oral squamous cell carcinoma (OSCC) is a major type of cancer that accounts for over 90% of all oral cancer cases. Recently developed evidence-based therapeutic regimens for OSCC based on monoclonal antibodies (mAbs), such as cetuximab, pembrolizumab, and nivolumab, have attracted considerable attention worldwide due to their high specificity, low toxicity, and low rates of intolerance. However, the efficacy of those three mAbs remains poor because of the low rate of responders and acquired resistance within a short period of time. The epithelial-mesenchymal transition (EMT) process is fundamental for OSCC growth and metastasis and is also responsible for the poor response to mAbs. During EMT, cancer cells consume abundant energy substrates and create an immunosuppressive tumor microenvironment to support their growth and evade T cells. In this review, we provide an overview of the complex roles of major substrates and signaling pathways involved in the development of therapeutic resistance in OSCC. In addition, we summarize potential therapeutic strategies that may help overcome this resistance. This review aims to help oral oncologists and researchers aiming to manage OSCC and establish new treatment modalities.

3.
Biomolecules ; 11(6)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208465

RESUMEN

The increasing incidence of resistance to chemotherapeutic agents has become a major issue in the treatment of oral cancer (OC). Epithelial-mesenchymal transition (EMT) has attracted a great deal of attention in recent years with regard to its relation to the mechanism of chemotherapy drug resistance. EMT-activating transcription factors (EMT-ATFs), such as Snail, TWIST, and ZEB, can activate several different molecular pathways, e.g., PI3K/AKT, NF-κB, and TGF-ß. In contrast, the activated oncological signal pathways provide reciprocal feedback that affects the expression of EMT-ATFs, resulting in a peritumoral extracellular environment conducive to cancer cell survival and evasion of the immune system, leading to resistance to multiple chemotherapeutic agents. We present an overview of evidence-based chemotherapy for OC treatment based on the National Comprehensive Cancer Network (NCCN) Chemotherapy Order Templates. We focus on the molecular pathways involved in drug resistance related to the EMT and highlight the signal pathways and transcription factors that may be important for EMT-regulated drug resistance. Rapid progress in antitumor regimens, together with the application of powerful techniques such as high-throughput screening and microRNA technology, will facilitate the development of therapeutic strategies to augment chemotherapy.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Quimioterapia/métodos , Transición Epitelial-Mesenquimal/fisiología , Humanos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta
4.
Materials (Basel) ; 14(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068558

RESUMEN

Uncalcined/unsintered hydroxyapatite (HA) and poly-l-lactide-co-glycolide (u-HA/PLLA/PGA) are novel bioresorbable bioactive materials with bone regeneration characteristics and have been used to treat mandibular defects in a rat model. However, the bone regenerative interaction with the periosteum, the inflammatory response, and the degradation of this material have not been examined. In this study, we used a rat mandible model to compare the above features in u-HA/PLLA/PGA and uncalcined/unsintered HA and poly-l-lactic acid (u-HA/PLLA). We divided 11 male Sprague-Dawley rats into 3- and 16-week groups. In each group, we assessed the characteristics of a u-HA/PLLA/PGA sheet covering the right mandibular angle and a u-HA/PLLA sheet covering the left mandibular angle in three rats each, and one rat was used as a sham control. The remaining three rats in the 16-week group were used for a degradation assessment and received both sheets of material as in the material assessment subgroup. At 3 and 16 weeks after surgery, the rats were sacrificed, and mandible specimens were subjected to micro-computed tomography, histological analysis, and immunohistochemical staining. The results indicated that the interaction between the periosteum and u-HA/PLLA/PGA material produced significantly more new bone regeneration with a lower inflammatory response and a faster resorption rate compared to u-HA/PLLA alone. These findings may indicate that this new biomaterial has ideal potential in treating maxillofacial defects of the midface and orbital regions.

5.
Nanomaterials (Basel) ; 11(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503931

RESUMEN

This study was performed to examine the applicability of the newly developed nano-biocomposite, ß-tricalcium phosphate (ß-TCP)/u-HA/poly-d/l-lactide (PDLLA), to bone defects in the oral and maxillofacial area. This novel nano-biocomposite showed several advantages, including biocompatibility, biodegradability, and osteoconductivity. In addition, its optimal plasticity also allowed its utilization in irregular critical bone defect reconstructive surgery. Here, three different nano-biomaterials, i.e., ß-TCP/PDLLA, ß-TCP, and PDLLA, were implanted into critical bone defects in the right lateral mandible of 10-week-old Sprague-Dawley (SD) rats as bone graft substitutes. Micro-computed tomography (Micro-CT) and immunohistochemical staining for the osteogenesis biomarkers, Runx2, osteocalcin, and the leptin receptor, were performed to investigate and compare bone regeneration between the groups. Although the micro-CT results showed the highest bone mineral density (BMD) and bone volume to total volume (BV/TV) with ß-TCP, immunohistochemical analysis indicated better osteogenesis-promoting ability of ß-TCP/PDLLA, especially at an early stage of the bone healing process. These results confirmed that the novel nano-biocomposite, ß-TCP/PDLLA, which has excellent biocompatibility, bioresorbability and bioactive/osteoconductivity, has the potential to become a next-generation biomaterial for use as a bone graft substitute in maxillofacial reconstructive surgery.

6.
Materials (Basel) ; 15(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35009297

RESUMEN

The advent of bioresorbable materials to overcome limitations and replace traditional bone-reconstruction titanium-plate systems for bone fixation, thus achieving greater efficiency and safety in medical and dental applications, has ushered in a new era in biomaterial development. Because of its bioactive osteoconductive ability and biocompatibility, the forged composite of uncalcined/unsintered hydroxyapatite and poly L-lactic acid (u-HA/PLLA) has attracted considerable interest from researchers in bone tissue engineering, as well as from clinicians, particularly for applications in maxillofacial reconstructive surgery. Thus, various in vitro studies, in vivo studies, and clinical trials have been conducted to investigate the feasibility and weaknesses of this biomaterial in oral and maxillofacial surgery. Various technical improvements have been proposed to optimize its advantages and limit its disadvantages. This narrative review presents an up-to-date, comprehensive review of u-HA/PLLA, a bioactive osteoconductive and bioresorbable bone-reconstruction and -fixation material, in the context of oral and maxillofacial surgery, notably maxillofacial trauma, orthognathic surgery, and maxillofacial reconstruction. It simultaneously introduces new trends in the development of bioresorbable materials that could used in this field. Various studies have shown the superiority of u-HA/PLLA, a third-generation bioresorbable biomaterial with high mechanical strength, biocompatibility, and bioactive osteoconductivity, compared to other bioresorbable materials. Future developments may focus on controlling its bioactivity and biodegradation rate and enhancing its mechanical strength.

7.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374294

RESUMEN

Uncalcined/unsintered hydroxyapatite and poly-l-lactide-co-glycolide (u-HA/PLLA/PGA) is a new bioresorbable nanomaterial with superior characteristics compared with current bioresorbable materials, including appropriate mechanical properties, outstanding bioactive/osteoconductive features, and remarkably shorter resorption time. Nevertheless, the bone regeneration characteristics of this nanomaterial have not been evaluated in maxillofacial reconstructive surgery. In this study, we used a rat mandible model to assess the bone regeneration ability of u-HA/PLLA/PGA material, compared with uncalcined/unsintered hydroxyapatite and poly-l-lactide acid (u-HA/PLLA) material, which has demonstrated excellent bone regenerative ability. A 4-mm-diameter defect was created at the mandibular angle area in 28 Sprague Dawley male rats. The rats were divided into three groups: u-HA/PLLA/PGA (u-HA/PLLA/PGA graft + defect), u-HA/PLLA (u-HA/PLLA graft + defect), and sham control (defect alone). At 1, 3, 8, and 16 weeks after surgeries, the rats were sacrificed and assessed by micro-computed tomography, histological analysis with hematoxylin and eosin staining, and immunohistochemical analyses. The results confirmed that the accelerated bone bioactive/regenerative osteoconduction of u-HA/PLLA/PGA was comparable with that of u-HA/PLLA in the rat mandible model. Furthermore, this new regenerative nanomaterial was able to more rapidly induce bone formation in the early stage and had great potential for further clinical applications in maxillofacial reconstructive surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...