Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662214

RESUMEN

Epileptic seizures induce aberrant neurogenesis from resident neural stem cells (NSCs) in the dentate gyrus of the adult mouse hippocampus, which has been implicated in depletion of the NSC pool and impairment of hippocampal function. However, the mechanisms regulating neurogenesis after seizures remain unknown. Here we demonstrate that Shh from mossy cells is a major source of Shh signaling activity after seizures, by which mossy cells contribute to seizure-induced neurogenesis and maintenance of the NSC pool. Deletion of Shh from mossy cells attenuates seizure-induced neurogenesis. Moreover, in the absence of Shh from mossy cells, NSCs pool are prematurely depleted after seizure-induced proliferation, and NSCs have impaired self-renewal. Likewise, lack of Shh from mossy cells accelerates age-related decline of the NSC pool with accompanying reduction of self-renewal of NSCs outside the context of pathology such as seizures. Together, our findings indicate that Shh from mossy cells is critical to maintain NSCs and to prevent exhaustion from excessive consumption in aging and after seizures.

2.
Ann Neurol ; 94(6): 1086-1101, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37632288

RESUMEN

OBJECTIVE: Co-occurring anti-tripartite motif-containing protein 9 and 67 autoantibodies (TRIM9/67-IgG) have been reported in only a very few cases of paraneoplastic cerebellar syndrome. The value of these biomarkers and the most sensitive methods of TRIM9/67-IgG detection are not known. METHODS: We performed a retrospective, multicenter study to evaluate the cerebrospinal fluid and serum of candidate TRIM9/67-IgG cases by tissue-based immunofluorescence, peptide phage display immunoprecipitation sequencing, overexpression cell-based assay (CBA), and immunoblot. Cases in which TRIM9/67-IgG was detected by at least 2 assays were considered TRIM9/67-IgG positive. RESULTS: Among these cases (n = 13), CBA was the most sensitive (100%) and revealed that all cases had TRIM9 and TRIM67 autoantibodies. Of TRIM9/67-IgG cases with available clinical history, a subacute cerebellar syndrome was the most common presentation (n = 7/10), followed by encephalitis (n = 3/10). Of these 10 patients, 70% had comorbid cancer (7/10), 85% of whom (n = 6/7) had confirmed metastatic disease. All evaluable cancer biopsies expressed TRIM9 protein (n = 5/5), whose expression was elevated in the cancerous regions of the tissue in 4 of 5 cases. INTERPRETATION: TRIM9/67-IgG is a rare but likely high-risk paraneoplastic biomarker for which CBA appears to be the most sensitive diagnostic assay. ANN NEUROL 2023;94:1086-1101.


Asunto(s)
Proteínas del Tejido Nervioso , Degeneración Cerebelosa Paraneoplásica , Humanos , Estudios Retrospectivos , Proteínas del Tejido Nervioso/metabolismo , Biomarcadores/líquido cefalorraquídeo , Autoanticuerpos/líquido cefalorraquídeo , Inmunoglobulina G
4.
Artículo en Inglés | MEDLINE | ID: mdl-35581007

RESUMEN

OBJECTIVE: To identify the autoantigen in 2 individuals with possible seronegative paraneoplastic neuropathy. METHODS: Serum and CSF were screened by tissue-based assay and panned for candidate autoantibodies by phage display immunoprecipitation sequencing (PhIP-Seq). The candidate antigen was validated by immunostaining knockout tissue and HEK 293T cell-based assay. RESULTS: Case 1 presented with gait instability, distal lower extremity numbness, and paresthesias after a recent diagnosis of serous uterine and fallopian carcinoma. Case 2 had a remote history of breast adenocarcinoma and presented with gait instability, distal lower extremity numbness, and paresthesias that progressed to generalized weakness. CSF and serum from both patients immunostained the axon initial segment (AIS) and node of Ranvier (NoR) of mice and enriched ßIV-spectrin by PhIP-Seq. Patient CSF and serum failed to immunostain NoRs in dorsal root sensory neurons from ßI/ßIV-deficient mice. ßIV-spectrin autoantibodies were confirmed by overexpression of AIS and nodal ßIV-spectrin isoforms Σ1 and Σ6 by a cell-based assay. ßIV-spectrin was not enriched in a combined 4,815 PhIP-Seq screens of healthy and other neurologic disease patients. DISCUSSION: Therefore, ßIV-spectrin autoantibodies may be a marker of paraneoplastic neuropathy. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that ßIV-spectrin antibodies are specific autoantibody biomarkers for paraneoplastic neuropathy.


Asunto(s)
Polineuropatía Paraneoplásica , Espectrina , Humanos , Autoanticuerpos , Hipoestesia , Parestesia , Animales , Ratones
6.
Front Neurol ; 13: 1102484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36756346

RESUMEN

Neuroinvasive infection is the most common cause of meningoencephalitis in people living with human immunodeficiency virus (HIV), but autoimmune etiologies have been reported. We present the case of a 51-year-old man living with HIV infection with steroid-responsive meningoencephalitis whose comprehensive pathogen testing was non-diagnostic. Subsequent tissue-based immunofluorescence with acute-phase cerebrospinal fluid revealed anti-neural antibodies localizing to the axon initial segment (AIS), the node of Ranvier (NoR), and the subpial space. Phage display immunoprecipitation sequencing identified ankyrinG (AnkG) as the leading candidate autoantigen. A synthetic blocking peptide encoding the PhIP-Seq-identified AnkG epitope neutralized CSF IgG binding to the AIS and NoR, thereby confirming a monoepitopic AnkG antibody response. However, subpial immunostaining persisted, indicating the presence of additional autoantibodies. Review of archival tissue-based staining identified candidate AnkG autoantibodies in a 60-year-old woman with metastatic ovarian cancer and seizures that were subsequently validated by cell-based assay. AnkG antibodies were not detected by tissue-based assay and/or PhIP-Seq in control CSF (N = 39), HIV CSF (N = 79), or other suspected and confirmed neuroinflammatory CSF cases (N = 1,236). Therefore, AnkG autoantibodies in CSF are rare but extend the catalog of AIS and NoR autoantibodies associated with neurological autoimmunity.

7.
Front Neurol ; 12: 728700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744969

RESUMEN

The development of autoimmune antibody panels has improved the diagnosis of paraneoplastic neurological disorders (PNDs) of the brain and spinal cord. Here, we present a case of a woman with a history of breast cancer who presented with a subacute sensory ataxia that progressed over 18 months. Her examination and diagnostic studies were consistent with a myelopathy. Metabolic, infectious, and autoimmune testing were non-diagnostic. However, she responded to empirical immunosuppression, prompting further workup for an autoimmune etiology. An unbiased autoantibody screen utilizing phage display immunoprecipitation sequencing (PhIP-Seq) identified antibodies to the anti-Yo antigens cerebellar degeneration related protein 2 like (CDR2L) and CDR2, which were subsequently validated by immunoblot and cell-based overexpression assays. Furthermore, CDR2L protein expression was restricted to HER2 expressing tumor cells in the patient's breast tissue. Recent evidence suggests that CDR2L is likely the primary antigen in anti-Yo paraneoplastic cerebellar degeneration, but anti-Yo myelopathy is poorly characterized. By immunostaining, we detected neuronal CDR2L protein expression in the murine and human spinal cord. This case demonstrates the diagnostic utility of unbiased assays in patients with suspected PNDs, supports prior observations that anti-Yo PND can be associated with isolated myelopathy, and implicates CDR2L as a potential antigen in the spinal cord.

8.
JAMA Neurol ; 78(12): 1503-1509, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694339

RESUMEN

Importance: Neuropsychiatric manifestations of COVID-19 have been reported in the pediatric population. Objective: To determine whether anti-SARS-CoV-2 and autoreactive antibodies are present in the cerebrospinal fluid (CSF) of pediatric patients with COVID-19 and subacute neuropsychiatric dysfunction. Design, Setting, and Participants: This case series includes 3 patients with recent SARS-CoV-2 infection as confirmed by reverse transcriptase-polymerase chain reaction or IgG serology with recent exposure history who were hospitalized at the University of California, San Francisco Benioff Children's Hospital and for whom a neurology consultation was requested over a 5-month period in 2020. During this period, 18 total children were hospitalized and tested positive for acute SARS-CoV-2 infection by reverse transcriptase-polymerase chain reaction or rapid antigen test. Main Outcomes and Measures: Detection and characterization of CSF anti-SARS-CoV-2 IgG and antineural antibodies. Results: Of 3 included teenaged patients, 2 patients had intrathecal anti-SARS-CoV-2 antibodies. CSF IgG from these 2 patients also indicated antineural autoantibodies on anatomic immunostaining. Autoantibodies targeting transcription factor 4 (TCF4) in 1 patient who appeared to have a robust response to immunotherapy were also validated. Conclusions and Relevance: Pediatric patients with COVID-19 and prominent subacute neuropsychiatric symptoms, ranging from severe anxiety to delusional psychosis, may have anti-SARS-CoV-2 and antineural antibodies in their CSF and may respond to immunotherapy.


Asunto(s)
Anticuerpos Antivirales/líquido cefalorraquídeo , Autoanticuerpos/líquido cefalorraquídeo , COVID-19/complicaciones , COVID-19/inmunología , Trastornos Mentales/líquido cefalorraquídeo , Trastornos Mentales/etiología , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/etiología , Adolescente , Animales , Ansiedad/etiología , Ansiedad/psicología , Autoinmunidad , Femenino , Humanos , Masculino , Fumar Marihuana/inmunología , Ratones , Trastornos del Movimiento/etiología , Examen Neurológico , Factor de Transcripción 4/inmunología
9.
Cell Rep Med ; 2(5): 100288, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33969321

RESUMEN

Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

10.
Biol Psychiatry ; 90(4): e23-e26, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34001372

RESUMEN

Retraction notice to: "Remission of Subacute Psychosis in a COVID-19 Patient With an Antineuronal Autoantibody After Treatment With Intravenous Immunoglobulin" by Lindsay S. McAlpine, Brooke Lifland, Joseph R. Check, Gustavo A. Angarita, Thomas T. Ngo, Samuel J. Pleasure, Michael R. Wilson, Serena S. Spudich, Shelli F. Farhadian, and Christopher M. Bartley (Biol Psychiatry 2021; 90:e23-e26); https://doi.org/10.1016/j.biopsych.2021.03.033. This article has been retracted at the request of corresponding author Christopher Bartley, with agreement from all authors and with approval from Biological Psychiatry Editor John H. Krystal, M.D. See Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). After this article was published, the authors determined that two cerebrospinal fluid (CSF) samples were inadvertently confused, resulting in publication of the wrong COVID-19 patient's immunostaining data. The authors determined that the two CSF samples came from COVID-19 patients with sequential case identifiers (i.e., one identifier ended in a "5" and the other in a "6"). To determine whether the published immunostaining results were produced by CSF from another COVID-19 patient, the authors reperformed the mouse brain immunostaining experiments using additional aliquots of stored CSF from the two research participants in question, as well as with the remaining CSF that had been used in the publication. After repeating the immunostaining with these CSF samples, two blinded raters were able to state unequivocally that the CSF samples from the two COVID-19 patients had been confused. Therefore, while the clinical features of the case report are accurate and unaffected, the research data belong to another COVID-19 research participant, not the one described in the published case report. The authors voluntarily informed the Journal of this honest error upon its discovery. All authors agree to retract this paper and sincerely apologize for having allowed the incorrect images to be published with this case report. To avoid misinterpretation of the research findings, both the editors and authors concur that the only proper course of action was to retract this version of the paper. However, this COVID-19 psychosis case remains of clinical interest because of the patient's clear response to immunotherapy. Therefore, the authors are revising the paper, which the Journal will consider further for publication.


Asunto(s)
COVID-19 , Trastornos Psicóticos , Autoanticuerpos , Humanos , Inmunoglobulinas Intravenosas , Trastornos Psicóticos/tratamiento farmacológico , SARS-CoV-2
11.
bioRxiv ; 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32935102

RESUMEN

One third of COVID-19 patients develop significant neurological symptoms, yet SARS-CoV-2 is rarely detected in central nervous system (CNS) tissue, suggesting a potential role for parainfectious processes, including neuroimmune responses. We therefore examined immune parameters in cerebrospinal fluid (CSF) and blood samples from a cohort of patients with COVID-19 and significant neurological complications. We found divergent immunological responses in the CNS compartment, including increased levels of IL-12 and IL-12-associated innate and adaptive immune cell activation. Moreover, we found increased proportions of B cells in the CSF relative to the periphery and evidence of clonal expansion of CSF B cells, suggesting a divergent intrathecal humoral response to SARS-CoV-2. Indeed, all COVID-19 cases examined had anti-SARS-CoV-2 IgG antibodies in the CSF whose target epitopes diverged from serum antibodies. We directly examined whether CSF resident antibodies target self-antigens and found a significant burden of CNS autoimmunity, with the CSF from most patients recognizing neural self-antigens. Finally, we produced a panel of monoclonal antibodies from patients' CSF and show that these target both anti-viral and anti-neural antigens-including one mAb specific for the spike protein that also recognizes neural tissue. This exploratory immune survey reveals evidence of a compartmentalized and self-reactive immune response in the CNS meriting a more systematic evaluation of neurologically impaired COVID-19 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...