Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 79(5): 987-996, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38502783

RESUMEN

BACKGROUND: The emergence of drug-resistant clones of Plasmodium falciparum is a major public health concern, and the ability to detect and track the spread of these clones is crucial for effective malaria control and treatment. However, in endemic settings, malaria infected people often carry multiple P. falciparum clones simultaneously making it likely to miss drug-resistant clones using traditional molecular typing methods. OBJECTIVES: Our goal was to develop a bioinformatics pipeline for compositional profiling in multiclonal P. falciparum samples, sequenced using the Oxford Nanopore Technologies MinION platform. METHODS: We developed the 'Finding P. falciparum haplotypes with resistance mutations in polyclonal infections' (PHARE) pipeline using existing bioinformatics tools and custom scripts written in python. PHARE was validated on three control datasets containing P. falciparum DNA of four laboratory strains at varying mixing ratios. Additionally, the pipeline was tested on clinical samples from children admitted to a paediatric hospital in the Central African Republic. RESULTS: The PHARE pipeline achieved high recall and accuracy rates in all control datasets. The pipeline can be used on any gene and was tested with amplicons of the P. falciparum drug resistance marker genes pfdhps, pfdhfr and pfK13. CONCLUSIONS: The PHARE pipeline helps to provide a more complete picture of drug resistance in the circulating P. falciparum population and can help to guide treatment recommendations. PHARE is freely available under the GNU Lesser General Public License v.3.0 on GitHub: https://github.com/Fippu/PHARE.


Asunto(s)
Biología Computacional , Resistencia a Medicamentos , Malaria Falciparum , Secuenciación de Nanoporos , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Humanos , Biología Computacional/métodos , Secuenciación de Nanoporos/métodos , Malaria Falciparum/parasitología , Resistencia a Medicamentos/genética , Antimaláricos/farmacología , Mutación
2.
Elife ; 122023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688360

RESUMEN

Total RNA sequencing (RNA-seq) is an important tool in the study of mosquitoes and the RNA viruses they vector as it allows assessment of both host and viral RNA in specimens. However, there are two main constraints. First, as with many other species, abundant mosquito ribosomal RNA (rRNA) serves as the predominant template from which sequences are generated, meaning that the desired host and viral templates are sequenced far less. Second, mosquito specimens captured in the field must be correctly identified, in some cases to the sub-species level. Here, we generate mosquito rRNA datasets which will substantially mitigate both of these problems. We describe a strategy to assemble novel rRNA sequences from mosquito specimens and produce an unprecedented dataset of 234 full-length 28S and 18S rRNA sequences of 33 medically important species from countries with known histories of mosquito-borne virus circulation (Cambodia, the Central African Republic, Madagascar, and French Guiana). These sequences will allow both physical and computational removal of rRNA from specimens during RNA-seq protocols. We also assess the utility of rRNA sequences for molecular taxonomy and compare phylogenies constructed using rRNA sequences versus those created using the gold standard for molecular species identification of specimens-the mitochondrial cytochrome c oxidase I (COI) gene. We find that rRNA- and COI-derived phylogenetic trees are incongruent and that 28S and concatenated 28S+18S rRNA phylogenies reflect evolutionary relationships that are more aligned with contemporary mosquito systematics. This significant expansion to the current rRNA reference library for mosquitoes will improve mosquito RNA-seq metagenomics by permitting the optimization of species-specific rRNA depletion protocols for a broader range of species and streamlining species identification by rRNA sequence and phylogenetics.


Asunto(s)
Culicidae , Metagenómica , Animales , ARN Ribosómico 18S/genética , Filogenia , Mosquitos Vectores/genética , ARN Ribosómico 28S/genética , Culicidae/genética
3.
Proc Natl Acad Sci U S A ; 119(21): e2104282119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35576470

RESUMEN

Malaria control interventions target nocturnal feeding of the Anopheles vectors indoors to reduce parasite transmission. Mass deployment of insecticidal bed nets and indoor residual spraying with insecticides, however, may induce mosquitoes to blood-feed at places and at times when humans are not protected. These changes can set a ceiling to the efficacy of these control interventions, resulting in residual malaria transmission. Despite its relevance for disease transmission, the daily rhythmicity of Anopheles biting behavior is poorly documented, most investigations focusing on crepuscular hours and nighttime. By performing mosquito collections 48-h around the clock, both indoors and outdoors, and by modeling biting events using circular statistics, we evaluated the full daily rhythmicity of biting in urban Bangui, Central African Republic. While the bulk of biting by Anopheles gambiae, Anopheles coluzzii, Anopheles funestus, and Anopheles pharoensis occurred from sunset to sunrise outdoors, unexpectedly ∼20 to 30% of indoor biting occurred during daytime. As biting events did not fully conform to any family of circular distributions, we fitted mixtures of von Mises distributions and found that observations were consistent with three compartments, corresponding indoors to populations of early-night, late-night, and daytime-biting events. It is not known whether these populations of biting events correspond to spatiotemporal heterogeneities or also to distinct mosquito genotypes/phenotypes belonging consistently to each compartment. Prevalence of Plasmodium falciparum in nighttime- and daytime-biting mosquitoes was the same. As >50% of biting occurs in Bangui when people are unprotected, malaria control interventions outside the domiciliary environment should be envisaged.


Asunto(s)
Anopheles , Ritmo Circadiano , Conducta Alimentaria , Mordeduras y Picaduras de Insectos , Malaria , Control de Mosquitos , Animales , Anopheles/parasitología , Anopheles/fisiología , República Centroafricana , Humanos , Mordeduras y Picaduras de Insectos/parasitología , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores , Plasmodium falciparum/aislamiento & purificación
4.
Interdiscip Perspect Infect Dis ; 2020: 3938541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802053

RESUMEN

Malaria is a major public health issue in the Central African Republic (CAR) despite massive scale-up of malaria interventions. However, no information is available on the incidence of malaria in febrile illness cases or on the distribution of malaria infection according to demographic characteristics, which are important indicators and valuable epidemiological surveillance tools. This study therefore aimed to characterize malaria in the network of sentinel sites set up for influenza surveillance. A retrospective analysis was conducted to explore the data from these sentinel sites from 2015 to 2018. The Paracheck-Pf® rapid diagnosis test kit was used to screen for malaria in febrile illness cases. A total of 3609 malaria cases were identified in 5397 febrile patients, giving an incidence rate of 66.8%. The age group of 1-4 years was the most affected by malaria (76.0%). Moreover, prevalence varied across different sentinel sites, with the Bossembele Health Center, located in a rural area, showing an incidence of 96%, the Saint Joseph Health Center in a semiurban area of Bangui showing an incidence of 75%, and the Bangui Pediatric Complex in an urban site with an incidence of only 44.6%. Malaria transmission was holoendemic over the four-year study period, and malaria incidence decreased from 2016 to 2018. The incidence of malaria coinfection with influenza was 6.8%. This study demonstrated clear microspatial heterogeneity of malaria. Malaria was consistently the most frequent cause of febrile illness. Including sites in different climate zones in the CAR will allow for a more representative study.

5.
Pathog Glob Health ; 112(7): 349-359, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30433868

RESUMEN

Malaria remains the main cause of mortality and morbidity in the Central African Republic. However, the main malaria vectors remain poorly characterised, preventing the design of suitable control strategies. Here, we characterised the patterns and mechanisms of insecticide resistance in three important vectors from Bangui. Mosquitoes were collected indoors, using electrical aspirators in July 2016 in two neighborhoods at Bangui. WHO bioassays performed, using F2 An. gambiae sensu lato (s.l.), revealed a high level of resistance to type I (permethrin) and II (deltamethrin) pyrethroids and dichlorodiphenyltrichloroethane (< 3% mortality). Molecular analysis revealed the co-occurrence of Anopheles coluzzii (56.8 %) and An. gambiae s.s. (43.2%) within the An. gambiae complex. Anopheles funestus s.s. was the sole species belonging to An. funestus group. Both kdr-w (40% of homozygotes and 60% of heterozygotes/kdr-w/wild type) and kdr-e (37.5% of heterozygotes) mutations were found in An. gambiae. Contrariwise, only the kdr-w (9.5% homozygotes and 85.7% of heterozygotes) was detected in An. coluzzii. Quantitative RT-PCR showed that CYP6M2 and CYP6P3 are not upregulated in An. coluzzii from Bangui. Analysis of the sodium channel gene revealed a reduced diversity in An. coluzzii and An. gambiae s.s. In An. funestus s.s., the pyrethroid/DDT GSTe2 L119F resistance allele was detected at high frequency (54.7%) whereas a very low frequency for Rdl was observed. Polymorphism analysis of GSTe2 and GABA receptor gene in An. funestus revealed the presence of one resistant haplotype for each gene. This study provides baseline information to help guide current and future malaria vector control interventions in CAR.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Animales , Bioensayo , República Centroafricana , Resistencia a los Insecticidas/efectos de los fármacos , Resistencia a los Insecticidas/fisiología , Malaria/epidemiología , Malaria/prevención & control , Malaria/transmisión , Tasa de Mutación
6.
Parasit Vectors ; 10(1): 164, 2017 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-28347325

RESUMEN

BACKGROUND: Major chikungunya outbreaks have affected several Central African countries during the past decade. The chikungunya virus (CHIKV) was isolated from humans and sylvan mosquitoes in the Central African Republic (CAR) during the 1970 and 1980s but has not been found recently, despite the presence of Aedes albopictus since 2010. The risk of a massive chikungunya epidemic is therefore potentially high, as the human populations are immunologically naïve and because of the presence of the mosquito vector. In order to estimate the risk of a large outbreak, we assessed the vector competence of local Ae. aegypti and Ae. albopictus populations for ancient local strains of CHIKV in CAR. Mosquitoes were orally infected with the virus, and its presence in mosquito saliva was analysed 7 and 14 days post-infection (dpi) by quantitative reverse transcriptase polymerase chain reaction. RESULTS: The two species had similar infection rates at 7 and 14 days, and the dissemination rate of both vectors was ≥ 80% at 14 dpi. Only females followed up to 14 dpi had CHKV in their saliva. CONCLUSION: These results confirm the risk of transmission of enzootic CHIKV by anthropophilic vectors such as Ae. aegypti and Ae. albopictus.


Asunto(s)
Aedes/virología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/transmisión , Virus Chikungunya/aislamiento & purificación , Mosquitos Vectores/virología , Animales , República Centroafricana/epidemiología , Fiebre Chikungunya/virología , Virus Chikungunya/clasificación , Virus Chikungunya/genética , Brotes de Enfermedades/prevención & control , Femenino , Humanos , Reacción en Cadena de la Polimerasa , Saliva/virología
7.
Parasit Vectors ; 9(1): 599, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27881148

RESUMEN

BACKGROUND: Aedes aegypti and Ae. albopictus are the main epidemic vectors of dengue, chikungunya and Zika viruses worldwide. Their control during epidemics relies mainly on control of larvae and adults with insecticides. Unfortunately, loss of susceptibility of both species to several insecticide classes limits the efficacy of interventions. In Africa, where Aedes-borne viruses are of growing concern, few data are available on resistance to insecticides. To fill this gap, we assessed the susceptibility to insecticides of Ae. aegypti and Ae. albopictus populations in the Central African Republic (CAR) and studied the mechanisms of resistance. METHODS: Immature stages were sampled between June and September 2014 in six locations in Bangui (the capital of CAR) for larval and adult bioassays according to WHO standard procedures. We also characterized DDT- and pyrethroid-resistant mosquitoes molecularly and biochemically, including tests for the activities of nonspecific esterases (α and ß), mixed-function oxidases, insensitive acetylcholinesterase and glutathione S-transferases. RESULTS: Larval bioassays, carried out to determine the lethal concentrations (LC50 and LC95) and resistance ratios (RR50 and RR95), suggested that both vector species were susceptible to Bacillus thuringiensis var. israeliensis and to temephos. Bioassays of adults showed susceptibility to propoxur and fenitrothion, except for one Ae. albopictus population that was suspected to be resistant to fenithrothion. None of the Ae. aegypti populations was fully susceptible to DDT. Ae. albopictus presented a similar profile to Ae. aegypti but with a lower mortality rate (41%). Possible resistance to deltamethrin was observed among Ae. aegypti and Ae. albopictus, although some were susceptible. No kdr mutations were detected in either species; however, the activity of detoxifying enzymes was higher in most populations than in the susceptible Ae. aegypti strain, confirming decreased susceptibility to DDT and deltamethrin. CONCLUSION: These findings suggested that regular, continuous monitoring of resistance is necessary in order to select the most effective adulticides for arbovirus control in Bangui.


Asunto(s)
Aedes/efectos de los fármacos , DDT/farmacología , Resistencia a los Insecticidas , Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Bioensayo , República Centroafricana , Análisis de Supervivencia
8.
C R Biol ; 339(11-12): 517-528, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27746072

RESUMEN

Both Ebolavirus and Marburgvirus were detected in several fruit bat species of the family Pteropodidae, suggesting that this taxon plays a key role in the life cycle of filoviruses. After four decades of Zaire Ebolavirus (ZEBOV) outbreaks in Central Africa, the virus was detected for the first time in West Africa in 2014. To better understand the role of fruit bats as potential reservoirs and circulating hosts between Central and West Africa, we examine here the phylogeny and comparative phylogeography of Pteropodidae. Our phylogenetic results confirm the existence of four independent lineages of African fruit bats: the genera Eidolon and Rousettus, and the tribes Epomophorini and Scotonycterini, and indicate that the three species suspected to represent ZEBOV reservoir hosts (Epomops franqueti, Hypsignathus monstrosus, and Myonycteris torquata) belong to an African clade that diversified rapidly around 8-7 Mya. To test for phylogeographic structure and for recent gene flow from Central to West Africa, we analysed the nucleotide variation of 675 cytochrome b gene (Cytb) sequences, representing eight fruit bat species collected in 48 geographic localities. Within Epomophorina, our mitochondrial data do not support the monophyly of two genera (Epomops and Epomophorus) and four species (Epomophorus gambianus, Epomops franqueti, Epomops buettikoferi, and Micropteropus pusillus). In Epomops, however, we found two geographic haplogroups corresponding to the Congo Basin and Upper Guinea forests, respectively. By contrast, we found no genetic differentiation between Central and West African populations for all species known to make seasonal movements, Eidolon helvum, E. gambianus, H. monstrosus, M. pusillus, Nanonycteris veldkampii, and Rousettus aegyptiacus. Our results suggest that only three fruit bat species were able to disperse directly ZEBOV from the Congo Basin to Upper Guinea: E. helvum, H. monstrosus, and R. aegyptiacus.


Asunto(s)
Quirópteros/fisiología , Brotes de Enfermedades/estadística & datos numéricos , Fiebre Hemorrágica Ebola/epidemiología , África Occidental/epidemiología , Animales , Quirópteros/clasificación , Quirópteros/genética , ADN/genética , Reservorios de Enfermedades , Flujo Génico , Marcadores Genéticos , Geografía , Filogenia , Filogeografía , Especificidad de la Especie
9.
Infect Genet Evol ; 33: 25-31, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25911440

RESUMEN

Chikungunya virus (CHIKV) is an alphavirus transmitted by the bite of mosquito vectors. Over the past 10 years, the virus has gained mutations that enhance its transmissibility by the Aedes albopictus vector, resulting in massive outbreaks in the Indian Ocean, Asia and Central Africa. Recent introduction of competent A. albopictus vectors into the Central African Republic (CAR) pose a threat of a Chikungunya fever (CHIKF) epidemic in this region. We undertook this study to assess the genetic diversity and background of CHIKV strains isolated in the CAR between 1975 and 1984 and also to estimate the ability of local strains to adapt to A. albopictus. Our results suggest that, local CHIKV strains have a genetic background compatible with quick adaptation to A. albopictus, as previously observed in other Central African countries. Intense surveillance of the human and vector populations is necessary to prevent or anticipate the emergence of a massive CHIKF epidemic in the CAR.


Asunto(s)
Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Variación Genética , Animales , República Centroafricana/epidemiología , Fiebre Chikungunya/transmisión , Virus Chikungunya/clasificación , Virus Chikungunya/aislamiento & purificación , Geografía , Humanos , Insectos Vectores , Filogenia , Vigilancia de la Población , Análisis de Secuencia de ADN , Proteínas Virales/genética
10.
Parasit Vectors ; 8: 191, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25885461

RESUMEN

Aedes albopictus, a mosquito native to Asia, has invaded all five continents during the past three decades. It was reported in central Africa in the 2000s, first in Cameroon, and, since then, has colonised almost all countries of the region. The species, originally considered a secondary vector of dengue viruses, has been showed to play a major role in transmission of chikungunya virus in numerous countries, including in the central African region. We review the current spread of Ae. albopictus in central Africa, its larval ecology and its impact on indigenous species such as Ae. aegypti. We explore the potential of Ae. albopictus to affect the epidemiology of emerging or re-emerging arboviruses and discuss the conventional means for its control, while emphasizing the importance of data on its susceptibility to insecticides to cope with potential outbreaks.


Asunto(s)
Aedes/crecimiento & desarrollo , Infecciones por Arbovirus/epidemiología , Ecosistema , Insectos Vectores , África Central/epidemiología , Grupos de Población Animal , Animales , Infecciones por Arbovirus/transmisión , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión
11.
PLoS One ; 9(6): e100172, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24959855

RESUMEN

The rising incidence of emerging infectious diseases (EID) is mostly linked to biodiversity loss, changes in habitat use and increasing habitat fragmentation. Bats are linked to a growing number of EID but few studies have explored the factors of viral richness in bats. These may have implications for role of bats as potential reservoirs. We investigated the determinants of viral richness in 15 species of African bats (8 Pteropodidae and 7 microchiroptera) in Central and West Africa for which we provide new information on virus infection and bat phylogeny. We performed the first comparative analysis testing the correlation of the fragmented geographical distribution (defined as the perimeter to area ratio) with viral richness in bats. Because of their potential effect, sampling effort, host body weight, ecological and behavioural traits such as roosting behaviour, migration and geographical range, were included into the analysis as variables. The results showed that the geographical distribution size, shape and host body weight have significant effects on viral richness in bats. Viral richness was higher in large-bodied bats which had larger and more fragmented distribution areas. Accumulation of viruses may be related to the historical expansion and contraction of bat species distribution range, with potentially strong effects of distribution edges on virus transmission. Two potential explanations may explain these results. A positive distribution edge effect on the abundance or distribution of some bat species could have facilitated host switches. Alternatively, parasitism could play a direct role in shaping the distribution range of hosts through host local extinction by virulent parasites. This study highlights the importance of considering the fragmentation of bat species geographical distribution in order to understand their role in the circulation of viruses in Africa.


Asunto(s)
Biodiversidad , Quirópteros/virología , Reservorios de Enfermedades/veterinaria , Virus/aislamiento & purificación , África , Animales , Quirópteros/clasificación , Enfermedades Transmisibles Emergentes/transmisión , Citocromos b/genética , Geografía , Filogenia , Densidad de Población , Dinámica Poblacional
12.
PLoS Negl Trop Dis ; 7(12): e2590, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349596

RESUMEN

The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) was first reported in central Africa in 2000, in Cameroon, with the indigenous mosquito species Ae. aegypti (Diptera: Culicidae). Today, this invasive species is present in almost all countries of the region, including the Central African Republic (CAR), where it was first recorded in 2009. As invasive species of mosquitoes can affect the distribution of native species, resulting in new patterns of vectors and concomitant risk for disease, we undertook a comparative study early and late in the wet season in the capital and the main cities of CAR to document infestation and the ecological preferences of the two species. In addition, we determined the probable geographical origin of invasive populations of Ae. albopictus with two mitochondrial DNA genes, COI and ND5. Analysis revealed that Ae. aegypti was more abundant earlier in the wet season and Ae. albopictus in the late wet season. Used tyres were the most heavily colonized productive larval habitats for both species in both seasons. The invasive species Ae. albopictus predominated over the resident species at all sites in which the two species were sympatric. Mitochondrial DNA analysis revealed broad low genetic diversity, confirming recent introduction of Ae. albopictus in CAR. Phylogeographical analysis based on COI polymorphism indicated that the Ae. albopictus haplotype in the CAR population segregated into two lineages, suggesting multiple sources of Ae. albopictus. These data may have important implications for vector control strategies in central Africa.


Asunto(s)
Aedes/clasificación , Aedes/crecimiento & desarrollo , Aedes/genética , Animales , República Centroafricana , Ciudades , Análisis por Conglomerados , ADN Mitocondrial/química , ADN Mitocondrial/genética , Ecosistema , Complejo IV de Transporte de Electrones/genética , Variación Genética , Datos de Secuencia Molecular , Filogeografía , Análisis de Secuencia de ADN
13.
Parasit Vectors ; 5: 175, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22897918

RESUMEN

BACKGROUND: The causative agent of yellow fever is an arbovirus of the Flaviviridae family transmitted by infected Aedes mosquitoes, particularly in Africa. In the Central African Republic since 2006, cases have been notified in the provinces of Ombella-Mpoko, Ouham-Pende, Basse-Kotto, Haute-Kotto and in Bangui the capital. As the presence of a vector of yellow fever virus (YFV) represents a risk for spread of the disease, we undertook entomological investigations at these sites to identify potential vectors of YFV and their abundance. FINDINGS: Between 2006 and 2010, 5066 mosquitoes belonging to six genera and 43 species were identified. The 20 species of the Aedes genus identified included Ae. aegypti, the main vector of YFV in urban settings, and species found in tropical forests, such as Ae. africanus, Ae. simpsoni, Ae. luteocephalus, Ae. vittatus and Ae. opok. These species were not distributed uniformly in the various sites studied. Thus, the predominant Aedes species was Ae. aegypti in Bangui (90.7 %) and Basse-Kotto (42.2 %), Ae. africanus in Ombella-Mpoko (67.4 %) and Haute-Kotto (77.8 %) and Ae. vittatus in Ouham-Pende (62.2 %). Ae. albopictus was also found in Bangui. The distribution of these dominant species differed significantly according to study site (P < 0.0001). None of the pooled homogenates of Aedes mosquitoes analysed by polymerase chain reaction contained the YFV genome. CONCLUSION: The results indicate a wide diversity of vector species for YFV in the Central African Republic. The establishment of surveillance and vector control programs should take into account the ecological specificity of each species.


Asunto(s)
Aedes/clasificación , Aedes/virología , Epidemias/estadística & datos numéricos , Fiebre Amarilla/epidemiología , Animales , República Centroafricana/epidemiología , Demografía , Ecosistema , Humanos , Control de Mosquitos , Especificidad de la Especie , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...