Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 16: 905285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090792

RESUMEN

Changes to sensory experience result in plasticity of synapses in the cortex. This experience-dependent plasticity (EDP) is a fundamental property of the brain. Yet, while much is known about neuronal roles in EDP, very little is known about the role of astrocytes. To address this issue, we used the well-described mouse whiskers-to-barrel cortex system, which expresses a number of forms of EDP. We found that all-whisker deprivation induced characteristic experience-dependent Hebbian depression (EDHD) followed by homeostatic upregulation in L2/3 barrel cortex of wild type mice. However, these changes were not seen in mutant animals (IP3R2-/-) that lack the astrocyte-expressed IP3 receptor subtype. A separate paradigm, the single-whisker experience, induced potentiation of whisker-induced response in both wild-type (WT) mice and IP3R2-/- mice. Recordings in ex vivo barrel cortex slices reflected the in vivo results so that long-term depression (LTD) could not be elicited in slices from IP3R2-/- mice, but long-term potentiation (LTP) could. Interestingly, 1 Hz stimulation inducing LTD in WT paradoxically resulted in NMDAR-dependent LTP in slices from IP3R2-/- animals. The LTD to LTP switch was mimicked by acute buffering astrocytic [Ca2+] i in WT slices. Both WT LTD and IP3R2-/- 1 Hz LTP were mediated by non-ionotropic NMDAR signaling, but only WT LTD was P38 MAPK dependent, indicating an underlying mechanistic switch. These results demonstrate a critical role for astrocytic [Ca2+] i in several EDP mechanisms in neocortex.

2.
J Physiol ; 600(10): 2499-2513, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413129

RESUMEN

The human TE671 cell line was originally used as a model of medulloblastoma but has since been reassigned as rhabdomyosarcoma. Despite the characterised endogenous expression of voltage-sensitive sodium currents in these cells, the specific voltage-gated sodium channel (VGSC) subtype underlying these currents remains unknown. To profile the VGSC subtype in undifferentiated TE671 cells, endpoint and quantitative reverse transcription-PCR (qRT-PCR), western blot and whole-cell patch clamp electrophysiology were performed. qRT-PCR profiling revealed that expression of the SCN9A gene was ∼215-fold greater than the SCN4A gene and over 400-fold greater than any of the other VGSC genes, while western blot confirmed that the dominant SCN9A RNA was translated to a protein with a molecular mass of ∼250 kDa. Elicited sodium currents had a mean amplitude of 2.6 ± 0.7 nA with activation and fast inactivation V50 values of -31.9 ± 1.1 and -69.6 ± 1.0 mV, respectively. The currents were completely and reversibly blocked by tetrodotoxin at concentrations greater than 100 nm (IC50  = 22.3 nm). They were also very susceptible to the NaV 1.7 specific blockers Huwentoxin-IV and Protoxin-II with IC50 values of 14.6 nm and 0.8 nm, respectively, characteristic of those previously determined for NaV 1.7. Combined, the results revealed the non-canonical and highly dominant expression of NaV 1.7 in the human TE671 rhabdomyosarcoma cell line. We show that the TE671 cell line is an easy to maintain and cost-effective model for the study of NaV 1.7, a major target for the development of analgesic drugs and more generally for the study of pain. KEY POINTS: Undifferentiated TE671 cells produce a voltage-sensitive sodium current when depolarised. The voltage-gated sodium channel isoform expressed in undifferentiated TE671 cells was previously unknown. Through qRT-PCR, western blot and toxin pharmacology, it is shown that undifferentiated TE671 cells dominantly (>99.5%) express the NaV 1.7 isoform that is strongly associated with pain. The TE671 cell line is, therefore, a very easy to maintain and cost-effective model to study NaV 1.7-targeting drugs.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Rabdomiosarcoma , Línea Celular , Humanos , Canal de Sodio Activado por Voltaje NAV1.4 , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor , Rabdomiosarcoma/genética , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
3.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31772017

RESUMEN

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Asunto(s)
Euterios , Evolución Molecular , Genoma/genética , Musarañas , Ponzoñas/genética , Animales , Euterios/clasificación , Euterios/genética , Euterios/fisiología , Duplicación de Gen , Masculino , Filogenia , Proteómica , Musarañas/clasificación , Musarañas/genética , Musarañas/fisiología , Calicreínas de Tejido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...