Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887315

RESUMEN

Globally, point-of-care testing (POCT) is the most preferable on-site technique for disease detection and includes a rapid diagnostic test (RDT) and fluorescent immunochromatographic strip test (FICT). The testing kits are generally insufficient in terms of signal enhancement, which is a major drawback of this approach. Sensitive and timely on-site POCT methods with high signal enhancement are therefore essential for the accurate diagnosis of infectious diseases. Herein, we prepare cysteamine-gold coated carboxylated europium chelated nanoparticle (Cys Au-EuNPs)-mediated POCT for the detection of the H5N1 avian influenza virus (AIV). Commercial nanoparticles were used for comparison. The spectral characteristics, surface morphologies, functional groups, surface charge and stability of the Cys AuNPs, EuNPs, and Cys Au-EuNPs were confirmed by UV-visible spectrophotometry, fluorescence spectrometry, transmission electron microscope with Selected area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FTIR) and zeta potential analysis. The particle size distribution revealed an average size of ~130 ± 0.66 nm for the Cys Au-EuNPs. The Cys Au-EuNP-mediated RDT (colorimetric analysis) and FICT kit revealed a limit of detection (LOD) of 10 HAU/mL and 2.5 HAU/mL, respectively, for H5N1 under different titer conditions. The obtained LOD is eight-fold that of commercial nanoparticle conjugates. The photo luminance (PL) stability of ~3% the Cys Au-EuNPs conjugates that was obtained under UV light irradiation differs considerably from that of the commercial nanoparticle conjugates. Overall, the developed Cys Au-EuNPs-mediated dual-mode POCT kit can be used as an effective nanocomposite for the development of on-site monitoring systems for infectious disease surveillance.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Nanopartículas del Metal , Animales , Cisteamina , Oro/química , Nanopartículas del Metal/química , Sistemas de Atención de Punto
2.
Biosens Bioelectron ; 197: 113768, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763153

RESUMEN

A rapid diagnostic system employing an antigen detection biosensing method is needed to discriminate between Zika virus (ZIKV) and Dengue virus (DENV) due to their close antigenic homology. We developed a novel peptide pair-based flow immunochromatographic test strip (FICT) assay to detect ZIKV. Peptide aptamers, P6.1 (KQERNNWPLTWT), P29.1 (KYTTSTLKSGV), and B2.33 (KRHVWVSLSYSCAEA) were designed by paratopes and modified against the ZIKV envelope protein based on the binding affinity. An antibody-free lateral FICT was developed using a pair of peptide aptamers. In the rapid diagnostic strip, the limit of detection (LOD) for the B2.33-P6.1 peptide pair for ZIKV was 2 × 104 tissue culture infective dose TCID50/mL. Significantly, FICT could discriminate ZIKV from DENV. The stability and performance of FICT were confirmed using human sera and urine, showing a comparable LOD value. Our study demonstrated that in silico modeling could be used to develop a novel peptide pair-based FICT assay for detecting ZIKV by a rapid diagnostic test.


Asunto(s)
Aptámeros de Péptidos , Técnicas Biosensibles , Dengue , Infección por el Virus Zika , Virus Zika , Anticuerpos Antivirales , Reacciones Cruzadas , Humanos , Péptidos , Infección por el Virus Zika/diagnóstico
3.
Viruses ; 13(11)2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34834997

RESUMEN

The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia-Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China's H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/clasificación , Subtipo H5N2 del Virus de la Influenza A/genética , Virus Reordenados/clasificación , Virus Reordenados/genética , Animales , Animales Salvajes/virología , Aves/virología , Modelos Animales de Enfermedad , Perros , Patos/virología , Heces/virología , Gansos/virología , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Japón , Células de Riñón Canino Madin Darby , Mamíferos , Ratones , Epidemiología Molecular , Filogenia , Aves de Corral/virología , Virus Reordenados/aislamiento & purificación , Virus Reordenados/patogenicidad , República de Corea/epidemiología , Virulencia , Replicación Viral
4.
Viruses ; 13(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067187

RESUMEN

Low-pathogenicity avian influenza viruses (LPAIV) introduced by migratory birds circulate in wild birds and can be transmitted to poultry. These viruses can mutate to become highly pathogenic avian influenza viruses causing severe disease and death in poultry. In March 2019, an H7N3 avian influenza virus-A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3)-was isolated from spot-billed ducks in South Korea. This study aimed to evaluate the phylogenetic and mutational analysis of this isolate. Molecular analysis revealed that the genes for HA (hemagglutinin) and NA (neuraminidase) of this strain belonged to the Central Asian lineage, whereas genes for other internal proteins such as polymerase basic protein 1 (PB1), PB2, nucleoprotein, polymerase acidic protein, matrix protein, and non-structural protein belonged to that of the Korean lineage. In addition, a monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, and the non-deletion of the stalk region in the NA gene indicated that this isolate was a typical LPAIV. Nucleotide sequence similarity analysis of HA revealed that the highest homology (99.51%) of this isolate is to that of A/common teal/Shanghai/CM1216/2017 (H7N7), and amino acid sequence of NA (99.48%) was closely related to that of A/teal/Egypt/MB-D-487OP/2016 (H7N3). An in vitro propagation of the A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3) virus showed highest (7.38 Log10 TCID50/mL) virus titer at 60 h post-infection, and in experimental mouse lungs, the virus was detected at six days' post-infection. Our study characterizes genetic mutations, as well as pathogenesis in both in vitro and in vivo model of a new Korea H7N3 viruses in 2019, carrying multiple potential mutations to become highly pathogenic and develop an ability to infect humans; thus, emphasizing the need for routine surveillance of avian influenza viruses in wild birds.


Asunto(s)
Patos/virología , Subtipo H7N3 del Virus de la Influenza A/clasificación , Subtipo H7N3 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Animales Salvajes/virología , Células Cultivadas , Femenino , Genes Virales , Genoma Viral , Genómica/métodos , Historia del Siglo XXI , Especificidad del Huésped , Subtipo H7N3 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/historia , Ratones , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Filogenia , Vigilancia en Salud Pública , Virus Reordenados , República de Corea/epidemiología , Replicación Viral
5.
Viruses ; 13(1)2020 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375376

RESUMEN

Influenza A virus subtype H1N1 has caused global pandemics like the "Spanish flu" in 1918 and the 2009 H1N1 pandemic several times. H1N1 remains in circulation and survives in multiple animal sources, including wild birds. Surveillance during the winter of 2018-2019 in Korea revealed two H1N1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1). Phylogenetic analysis indicated that M gene of KNU18-64(H1N1) isolate resembles that of the Alaskan avian influenza virus, whereas WKU19-4(H1N1) appears to be closer to the Mongolian virus. Molecular characterization revealed that they harbor the amino acid sequence PSIQRSGLF and are low-pathogenicity influenza viruses. In particular, the two isolates harbored three different mutation sites, indicating that they have different virulence characteristics. The mutations in the PB1-F2 and PA protein of WKU19-4(H1N1) indicate increasing polymerase activity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic increase in the viral titer after 12 h post-inoculation compared with that in the control group H1N1 (CA/04/09(pdm09)). The KNU18-64(H1N1) isolate carries mutations indicating an increase in mammal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with titers of 2.71 ± 0.16 and 3.71 ± 0.25 log10(TCID50/mL), respectively, whereas the virus was only detected in the WKU19-4(H1N1) group at day 6 post-infection, with a lower titer of 2.75 ± 0.51 log10(TCID50/mL). The present study supports the theory that there is a relationship between Korea and America with regard to reassortment to produce novel viral strains. Therefore, there is a need for increased surveillance of influenza virus circulation in free-flying and wild land-based birds in Korea, particularly with regard to Alaskan and Asian strains.


Asunto(s)
Animales Salvajes , Patos/virología , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Virus Reordenados , Animales , Perros , Femenino , Genoma Viral , Genómica/métodos , Historia del Siglo XXI , Especificidad del Huésped , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/historia , Gripe Aviar/patología , Células de Riñón Canino Madin Darby , Ratones , Filogenia , Vigilancia en Salud Pública , República de Corea/epidemiología
6.
Intervirology ; 62(3-4): 145-155, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31533104

RESUMEN

BACKGROUND: When infected with the chikungunya virus (CHIKV), 3% to 28% of CHIKV-infected individuals remain asymptomatic, necessitating the development of improved high-throughput screening methods to overcome the limitations of molecular diagnostics or enzyme-linked immunosorbent assays (ELISAs). OBJECTIVE: In this study, two novel monoclonal antibodies (mAbs) targeting envelope 1 (E1) of CHIKV were developed and applied in a fluorescence-linked immunosorbent assay (FLISA) using coumarin-derived dendrimer as the fluorophore. METHODS: The performance of the FLISA was compared with that of ELISA. RESULTS: Using the two novel mAbs (2B5 and 2C8), FLISA could detect 1 × 105 PFU/mL of CHIKV, exhibiting a 2-fold lower limit of detection (LOD) compared to ELISA. The LOD of FICT corresponded to a comparative threshold value of 23.95 and 4 × 106 of RNA copy number/µL. In the presence of human sera and blood, virus detection by FLISA was 3-fold better than ELISA, with an LOD of 2 × 105 PFU/mL. Sera and blood interfered with the ELISA, resulting in 6 × 105 PFU/mL as the LOD. CONCLUSIONS: FLISA using two novel mAbs and coumarin-derived dendrimer is a superior diagnostic assay for detecting CHIKV in human sera and blood, compared to conventional ELISA.


Asunto(s)
Antígenos Virales/análisis , Fiebre Chikungunya/diagnóstico , Virus Chikungunya/aislamiento & purificación , Pruebas Diagnósticas de Rutina/métodos , Fluorometría/métodos , Técnicas para Inmunoenzimas/métodos , Proteínas del Envoltorio Viral/análisis , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Virus Chikungunya/inmunología , Humanos , Sensibilidad y Especificidad
7.
J Biomed Nanotechnol ; 15(6): 1185-1200, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31072427

RESUMEN

Despite significant progress in the development of diagnostic methods for influenza, avian influenza (AI) infection continues to represent a substantial threat to human health. Among the subtypes of AI, H5 influenza is highly infectious to animals and humans; however, there are no reliable H5 subtype-specific diagnostic systems owing to a scarcity of H5 subtype-specific detection elements. In this study, a new peptide aptamer (P1:KASGYTFTSF) was developed to recognize the H5 viral subtype using an in silico bioinformatics approach for predicting complementarity-determining regions (CDRs), and the aptamer was evaluated by immunoassays. The three-dimensional structure of influenza hemagglutinin (HA) and the peptide were used in a molecular docking study, and the peptide was compared to the epitope-derived peptide aptamer (H5-P2:KPNGAINF). Interactions between the peptides and the virus were then assessed by fluorescence-linked sandwich immunosorbent assay (FLISA), immunofluorescence staining assay (IFA), and rapid fluorescent immunochromatographic assay (FICT). P1 and H5-P2 both significantly detected H5N3 at 15.6 HAU/mL (P < 0.05), and P1 detected the virus more effectively (P < 0.05), consistent with the docking result. An optical image of the peptide recognizing an H5N3-infected cell was acquired by IFA, and was consistent with the antibody-linked IFA result. FICT employing the peptide showed the ability for H5 subtype-specific diagnosis, with 2-fold higher performance than that of a conventional, antibody-linked rapid test. This work shows the potential of a CDR-predicted peptide aptamer as a probe for immunological assays that can specifically recognize AI virus.


Asunto(s)
Virus de la Influenza A , Aptámeros de Péptidos , Regiones Determinantes de Complementariedad , Simulación del Acoplamiento Molecular , Péptidos
8.
Theranostics ; 8(22): 6132-6148, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613288

RESUMEN

Accurate and rapid diagnosis of highly pathogenic avian influenza A H5N1 is of critical importance for the effective clinical management of patients. Here, we developed a rapid and simultaneous detection toolkit for influenza A H5 subtype viruses in human samples based on a bioconjugate of quantum dots (QDs) assembly and a smartphone-based rapid dual fluorescent diagnostic system (SRDFDS). Methods: Two types of QDs were assembled on a latex bead to enhance the detection sensitivity and specificity of influenza A infection (QD580) and H5 subtype (QD650). The dual signals of influenza A and H5 subtype of H5N1-infected patients were detected simultaneously and quantified separately by SRDFDS equipped with two emission filters. Results: Our results showed a high sensitivity of 92.86% (13/14) and 78.57% (11/14), and a specificity of 100% (38/38, P < 0.0001) and 97.37% (37/38) for influenza A and H5 subtype detection, respectively. Conclusion: Therefore, our multiplex QD bioconjugates and SRDFDS-based influenza virus detection toolkit potentially provide accurate and meaningful diagnosis information with improved detection accuracies and sensitivities for H5N1 patients.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Virus de la Influenza A/fisiología , Gripe Humana/diagnóstico , Teléfono Inteligente/estadística & datos numéricos , Adolescente , Adulto , Animales , Aves , Niño , Preescolar , Femenino , Técnica del Anticuerpo Fluorescente/instrumentación , Humanos , Subtipo H5N1 del Virus de la Influenza A/fisiología , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/virología , Masculino , Puntos Cuánticos/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...