Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 14(1): 6710, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872202

RESUMEN

The HIV-1 entry inhibitor temsavir prevents the viral receptor CD4 (cluster of differentiation 4) from interacting with the envelope glycoprotein (Env) and blocks its conformational changes. To do this, temsavir relies on the presence of a residue with small side chain at position 375 in Env and is unable to neutralize viral strains like CRF01_AE carrying His375. Here we investigate the mechanism of temsavir resistance and show that residue 375 is not the sole determinant of resistance. At least six additional residues within the gp120 inner domain layers, including five distant from the drug-binding pocket, contribute to resistance. A detailed structure-function analysis using engineered viruses and soluble trimer variants reveals that the molecular basis of resistance is mediated by crosstalk between His375 and the inner domain layers. Furthermore, our data confirm that temsavir can adjust its binding mode to accommodate changes in Env conformation, a property that likely contributes to its broad antiviral activity.


Asunto(s)
Fármacos Anti-VIH , Inhibidores de Fusión de VIH , Infecciones por VIH , VIH-1 , Humanos , VIH-1/fisiología , Fármacos Anti-VIH/uso terapéutico , Proteína gp120 de Envoltorio del VIH/genética
2.
Front Immunol ; 14: 1178355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334379

RESUMEN

SARS-CoV-2, the virus behind the COVID-19 pandemic, has changed over time to the extent that the current virus is substantially different from what originally led to the pandemic in 2019-2020. Viral variants have modified the severity and transmissibility of the disease and continue do so. How much of this change is due to viral fitness versus a response to immune pressure is hard to define. One class of antibodies that continues to afford some level of protection from emerging variants are those that closely overlap the binding site for angiotensin-converting enzyme 2 (ACE2) on the receptor binding domain (RBD). Some members of this class that were identified early in the course of the pandemic arose from the VH 3-53 germline gene (IGHV3-53*01) and had short heavy chain complementarity-determining region 3s (CDR H3s). Here, we describe the molecular basis of the SARS-CoV-2 RBD recognition by the anti-RBD monoclonal antibody CoV11 isolated early in the COVID-19 pandemic and show how its unique mode of binding the RBD determines its neutralization breadth. CoV11 utilizes a heavy chain VH 3-53 and a light chain VK 3-20 germline sequence to bind to the RBD. Two of CoV11's four heavy chain changes from the VH 3-53 germline sequence, ThrFWR H128 to Ile and SerCDR H131 to Arg, and some unique features in its CDR H3 increase its affinity to the RBD, while the four light chain changes from the VK 3-20 germline sequence sit outside of the RBD binding site. Antibodies of this type can retain significant affinity and neutralization potency against variants of concern (VOCs) that have diverged significantly from original virus lineage such as the prevalent omicron variant. We also discuss the mechanism by which VH 3-53 encoded antibodies recognize spike antigen and show how minimal changes to their sequence, their choice of light chain, and their mode of binding influence their affinity and impact their neutralization breadth.


Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Familia de Multigenes , Anticuerpos
3.
iScience ; 26(1): 105783, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36514310

RESUMEN

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

4.
Front Immunol ; 13: 960411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131913

RESUMEN

Fc mediated effector functions of antibodies play important roles in immunotherapies and vaccine efficacy but assessing those functions in animal models can be challenging due to species differences. Rhesus macaques, Macaca mulatta (Mm) share approximately 93% sequence identity with humans but display important differences in their adaptive immune system that complicates their use in validating therapeutics and vaccines that rely on Fc effector functions. In contrast to humans, macaques only have one low affinity FcγRIII receptor, CD16, which shares a polymorphism at position 158 with human FcγRIIIa with Ile158 and Val158 variants. Here we describe structure-function relationships of the Ile/Val158 polymorphism in Mm FcγRIII. Our data indicate that the affinity of the allelic variants of Mm FcγRIII for the macaque IgG subclasses vary greatly with changes in glycan composition both on the Fc and the receptor. However, unlike the human Phe/Val158 polymorphism in FcγRIIIa, the higher affinity variant corresponds to the larger, more hydrophobic side chain, Ile, even though it is not directly involved in the binding interface. Instead, this side chain appears to modulate glycan-glycan interactions at the Fc/FcγRIII interface. Furthermore, changes in glycan composition on the receptor have a greater effect for the Val158 variant such that with oligomannose type glycans and with glycans only on Asn45 and Asn162, Val158 becomes the variant with higher affinity to Fc. These results have implications not only for the better interpretation of nonhuman primate studies but also for studies performed with human effector cells carrying different FcγRIIIa alleles.


Asunto(s)
Inmunoglobulina G , Polisacáridos , Animales , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Macaca mulatta , Polisacáridos/metabolismo , Receptores de IgG/inmunología
5.
Sci Adv ; 8(28): eabn4188, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857504

RESUMEN

Soluble angiotensin-converting enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses using ACE2 as their receptor. Using structure-guided approaches, we developed a series of bivalent ACE2-Fcs harboring functionally and structurally validated mutations that enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain recognition by up to ~12-fold and remove angiotensin enzymatic activity. The lead variant M81 potently cross-neutralized SARS-CoV-2 variants of concern (VOCs), including Omicron, at subnanomolar half-maximal inhibitory concentration and was capable of robust Fc-effector functions, including antibody-dependent cellular cytotoxicity, phagocytosis, and complement deposition. When tested in a stringent K18-hACE2 mouse model, Fc-enhanced ACE2-Fc delayed death by 3 to 5 days or effectively resolved lethal SARS-CoV-2 infection in both prophylactic and therapeutic settings via the combined effects of neutralization and Fc-effector functions. These data add to the demonstrated utility of soluble ACE2 as a valuable SARS-CoV-2 antiviral and indicate that Fc-effector functions may constitute an important component of ACE2-Fc therapeutic activity.

6.
Cancer Epidemiol Biomarkers Prev ; 31(3): 543-553, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34933959

RESUMEN

BACKGROUND: It is unknown whether the risk of thyroid cancer differs among metabolically healthy/unhealthy, normal-weight, or obese women. We aimed to assess the association of metabolic health and obesity with thyroid cancer risk. METHODS: The Korean Genome and Epidemiology Study is a population-based prospective cohort study. Data were obtained from 173,343 participants (age ≥40 years) enrolled from 2004 to 2013. Obese participants were those with body mass index (BMI) ≥25 kg/m2. Participants with abnormalities in three of these indices were considered metabolically unhealthy: triglycerides, blood pressure, high-density lipoprotein cholesterol (HDL-cholesterol), waist circumference (WC), and fasting glucose levels. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for thyroid cancer risk associated with metabolic health and obesity. RESULTS: Compared with nonobese women without metabolic abnormalities, metabolically unhealthy women, either normal weight or obese, had an increased risk of thyroid cancer [HR (95% CI) = 1.57 (1.02-2.40) and 1.71 (1.21-2.41), respectively). Significant association was not observed in men. Thyroid cancer risk was higher among nonobese women with high WC [≥85 cm; HR (95% CI) = 1.62 (1.03-2.56)] than in nonobese women with low WC, and in obese women with low HDL-cholesterol [<50 mg/dL; HR (95% CI) = 1.75 (1.26-2.42)] compared with nonobese women with high HDL-cholesterol. CONCLUSIONS: Metabolically unhealthy women or women with central adiposity may be at an increased thyroid cancer risk despite normal BMI. IMPACT: This study suggests that women with central obesity and metabolic abnormality despite normal BMI may constitute a target group for thyroid cancer prevention and control programs.


Asunto(s)
Hipercolesterolemia , Síndrome Metabólico , Neoplasias de la Tiroides , Adulto , Índice de Masa Corporal , Colesterol , Femenino , Humanos , Masculino , Síndrome Metabólico/complicaciones , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/metabolismo , Obesidad Abdominal/complicaciones , Obesidad Abdominal/epidemiología , Estudios Prospectivos , República de Corea/epidemiología , Factores de Riesgo , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/etiología
7.
bioRxiv ; 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34845451

RESUMEN

Soluble Angiotensin-Converting Enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses utilizing ACE2 as their receptor. Here, using structure-guided approaches, we developed divalent ACE2 molecules by grafting the extracellular ACE2-domain onto a human IgG1 or IgG3 (ACE2-Fc). These ACE2-Fcs harbor structurally validated mutations that enhance spike (S) binding and remove angiotensin enzymatic activity. The lead variant bound tightly to S, mediated in vitro neutralization of SARS-CoV-2 variants of concern (VOCs) with sub-nanomolar IC 50 and was capable of robust Fc-effector functions, including antibody-dependent-cellular cytotoxicity, phagocytosis and complement deposition. When tested in a stringent K18-hACE2 mouse model, it delayed death or effectively resolved lethal SARS-CoV-2 infection in a prophylactic or therapeutic setting utilizing the combined effect of neutralization and Fc-effector functions. These data confirm the utility of ACE2-Fcs as valuable agents in preventing and eliminating SARS-CoV-2 infection and demonstrate that ACE2-Fc therapeutic activity require Fc-effector functions.

8.
Viruses ; 13(10)2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34696383

RESUMEN

To minimize immune responses against infected cells, HIV-1 has evolved different mechanisms to limit the surface expression of its envelope glycoproteins (Env). Recent observations suggest that the binding of certain broadly neutralizing antibodies (bNAbs) targeting the 'closed' conformation of Env induces its internalization. On the other hand, non-neutralizing antibodies (nNAbs) that preferentially target Env in its 'open' conformation, remain bound to Env on the cell surface for longer periods of time. In this study, we attempt to better understand the underlying mechanisms behind the differential rates of antibody-mediated Env internalization. We demonstrate that 'forcing' open Env using CD4 mimetics allows for nNAb binding and results in similar rates of Env internalization as those observed upon the bNAb binding. Moreover, we can identify distinct populations of Env that are differentially targeted by Abs that mediate faster rates of internalization, suggesting that the mechanism of antibody-induced Env internalization partially depends on the localization of Env on the cell surface.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Endocitosis/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Internalización del Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Antígenos CD4/metabolismo , Epítopos/inmunología , Células HEK293 , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Conformación Molecular
9.
mBio ; 12(5): e0140521, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34579568

RESUMEN

In HIV-1 infection, many antibodies (Abs) are elicited to Envelope (Env) epitopes that are conformationally masked in the native trimer and are only available for antibody recognition after the trimer binds host cell CD4. Among these are epitopes within the Co-Receptor Binding Site (CoRBS) and the constant region 1 and 2 (C1-C2 or cluster A region). In particular, C1-C2 epitopes map to the gp120 face interacting with gp41 in the native, "closed" Env trimer present on HIV-1 virions or expressed on HIV-1-infected cells. Antibodies targeting this region are therefore nonneutralizing and their potential as mediators of antibody-dependent cellular cytotoxicity (ADCC) of HIV-1-infected cells diminished by a lack of available binding targets. Here, we present the design of Ab-CD4 chimeric proteins that consist of the Ab-IgG1 of a CoRBS or cluster A specificity to the extracellular domains 1 and 2 of human CD4. Our Ab-CD4 hybrids induce potent ADCC against infected primary CD4+ T cells and neutralize tier 1 and 2 HIV-1 viruses. Furthermore, competition binding experiments reveal that the observed biological activities rely on both the antibody and CD4 moieties, confirming their cooperativity in triggering conformational rearrangements of Env. Our data indicate the utility of these Ab-CD4 hybrids as antibody therapeutics that are effective in eliminating HIV-1 through the combined mechanisms of neutralization and ADCC. This is also the first report of single-chain-Ab-based molecules capable of opening "closed" Env trimers on HIV-1 particles/infected cells to expose the cluster A region and activate ADCC and neutralization against these nonneutralizing targets. IMPORTANCE Highly conserved epitopes within the coreceptor binding site (CoRBS) and constant region 1 and 2 (C1-C2 or cluster A) are only available for antibody recognition after the HIV-1 Env trimer binds host cell CD4; therefore, they are not accessible on virions and infected cells, where the expression of CD4 is downregulated. Here, we have developed new antibody fusion molecules in which domains 1 and 2 of soluble human CD4 are linked with monoclonal antibodies of either the CoRBS or cluster A specificity. We optimized the conjugation sites and linker lengths to allow each of these novel bispecific fusion molecules to recognize native "closed" Env trimers and induce the structural rearrangements required for exposure of the epitopes for antibody binding. Our in vitro functional testing shows that our Ab-CD4 molecules can efficiently target and eliminate HIV-1-infected cells through antibody-dependent cellular cytotoxicity and inactivate HIV-1 virus through neutralization.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Epítopos/metabolismo , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes , Antígenos CD4/genética , Antígenos CD4/inmunología , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/inmunología , Epítopos/inmunología , Humanos , Pruebas de Neutralización , Unión Proteica
10.
mBio ; 12(4): e0127421, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34281393

RESUMEN

The first step in HIV-1 entry is the attachment of the envelope (Env) trimer to target cell CD4. As such, the CD4-binding site (CD4bs) remains one of the few universally accessible sites for antibodies (Abs). We recently described a method of isolating Abs directly from the circulating plasma and described a panel of broadly neutralizing Abs (bnAbs) from an HIV-1 "elite neutralizer" referred to as patient N49 (N49 Ab lineage [M. M. Sajadi, A. Dashti, Z. R. Tehrani, W. D. Tolbert, et al., Cell 173:1783-1795.e14, 2018, https://doi.org/10.1016/j.cell.2018.03.061]). Here, we describe the molecular details of antigen recognition by N49P6, an Ab of the N49 lineage that recapitulates most of the neutralization breadth and potency of the donor's plasma IgG. Our studies done in the context of monomeric and trimeric antigens indicate that N49P6 combines many characteristics of known CD4bs-specific bnAbs with features that are unique to the N49 Ab lineage to achieve its remarkable neutralization breadth. These include the omission of the CD4 Phe43 cavity and dependence instead on interactions with highly conserved gp120 inner domain layer 3. Interestingly, when bound to BG505 SOSIP, N49P6 closely mimics the initial contact of host receptor CD4 to the adjacent promoter of the HIV-1 Env trimer to lock the trimer in the closed conformation. Altogether, N49P6 defines a new class of near-pan-neutralizing, plasma deconvoluted CD4bs Abs that we refer to as the N49P series. The details of the mechanisms of action of this new Ab class pave the way for the next generation of HIV-1 bnAbs that can be used as vaccine components of therapeutics. IMPORTANCE Binding to target cell CD4 is the first crucial step required for HIV-1 infection. Thus, the CD4-binding site (CD4bs) is one of the most accessible sites for antibodies (Abs). However, due to steric constraints, only a few Abs are capable of targeting this site. Here, we show that the exceptional neutralization breadth and potency of N49P6, a near-pan-neutralizing Ab targeting the CD4bs isolated from the plasma of an HIV-1 "elite neutralizer," patient N49, are due to its signature combination of more typical CD4bs Ab-binding characteristics with unique interactions with the highly conserved gp120 inner domain. In addition, we also present a structural analysis of N49P6 in complex with the BG505 SOSIP trimer to show that N49P6 exhibits remarkable breadth in part by mimicking CD4's quaternary interaction with the neighboring gp120 protomer. In its mode of antigen interaction, N49P6 is unique and represents a new class of CD4bs-specific bnAbs.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Antígenos CD4/metabolismo , Epítopos/metabolismo , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Sitios de Unión de Anticuerpos , Antígenos CD4/inmunología , Cristalización , Epítopos/química , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Interacciones Microbiota-Huesped/inmunología , Humanos , Pruebas de Neutralización , Multimerización de Proteína
11.
Cancers (Basel) ; 13(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066036

RESUMEN

NKX3.1's downregulation is strongly associated with prostate cancer (PCa) initiation, progression, and CRPC development. Nevertheless, a clear disagreement exists between NKX3.1 protein and mRNA levels in PCa tissues, indicating that its regulation at a post-translational level plays a vital role. This study identified a strong negative relationship between NKX3.1 and LIMK2, which is critical in CRPC pathogenesis. We identified that NKX3.1 degradation by direct phosphorylation by LIMK2 is crucial for promoting oncogenicity in CRPC cells and in vivo. LIMK2 also downregulates NKX3.1 mRNA levels. In return, NKX3.1 promotes LIMK2's ubiquitylation. Thus, the negative crosstalk between LIMK2-NKX3.1 regulates AR, ARv7, and AKT signaling, promoting aggressive phenotypes. We also provide a new link between NKX3.1 and PTEN, both of which are downregulated by LIMK2. PTEN loss is strongly linked with NKX3.1 downregulation. As NKX3.1 is a prostate-specific tumor suppressor, preserving its levels by LIMK2 inhibition provides a tremendous opportunity for developing targeted therapy in CRPC. Further, as NKX3.1 downregulates AR transcription and inhibits AKT signaling, restoring its levels by inhibiting LIMK2 is expected to be especially beneficial by co-targeting two driver pathways in tandem, a highly desirable requisite for developing effective PCa therapeutics.

13.
Front Immunol ; 12: 787603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069563

RESUMEN

Passive transfer of monoclonal antibodies (mAbs) of human origin into Non-Human Primates (NHPs), especially those which function predominantly by a Fc-effector mechanism, requires an a priori preparation step, in which the human mAb is reengineered to an equivalent NHP IgG subclass. This can be achieved by changing both the Fc and Fab sequence while simultaneously maintaining the epitope specificity of the parent antibody. This Ab reengineering process, referred to as rhesusization, can be challenging because the simple grafting of the complementarity determining regions (CDRs) into an NHP IgG subclass may impact the functionality of the mAb. Here we describe the successful rhesusization of a set of human mAbs targeting HIV-1 envelope (Env) epitopes involved in potent Fc-effector function against the virus. This set includes a mAb targeting a linear gp120 V1V2 epitope isolated from a RV144 vaccinee, a gp120 conformational epitope within the Cluster A region isolated from a RV305 vaccinated individual, and a linear gp41 epitope within the immunodominant Cys-loop region commonly targeted by most HIV-1 infected individuals. Structural analyses confirm that the rhesusized variants bind their respective Env antigens with almost identical specificity preserving epitope footprints and most antigen-Fab atomic contacts with constant regions folded as in control RM IgG1s. In addition, functional analyses confirm preservation of the Fc effector function of the rhesusized mAbs including the ability to mediate Antibody Dependent Cell-mediated Cytotoxicity (ADCC) and antibody dependent cellular phagocytosis by monocytes (ADCP) and neutrophils (ADNP) with potencies comparable to native macaque antibodies of similar specificity. While the antibodies chosen here are relevant for the examination of the correlates of protection in HIV-1 vaccine trials, the methods used are generally applicable to antibodies for other purposes.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Anti-VIH , VIH-1/inmunología , Inmunoglobulina G , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/inmunología , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología
14.
mBio ; 11(3)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605979

RESUMEN

Antibodies (Abs) specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (C1/C2) were induced in the RV144 vaccine trial, where antibody-dependent cellular cytotoxicity (ADCC) correlated with reduced risk of HIV-1 infection. We combined X-ray crystallography and fluorescence resonance energy transfer-fluorescence correlation spectroscopy to describe the molecular basis for epitopes of seven RV144 Abs and compared them to A32 and C11, C1/C2 Abs induced in HIV infection. Our data indicate that most vaccine Abs recognize the 7-stranded ß-sandwich of gp120, a unique hybrid epitope bridging A32 and C11 binding sites. Although primarily directed at the 7-stranded ß-sandwich, some accommodate the gp120 N terminus in C11-bound 8-stranded conformation and therefore recognize a broader range of CD4-triggered Env conformations. Our data also suggest that Abs of RV144 and RV305, the RV144 follow-up study, although likely initially induced by the ALVAC-HIV prime encoding full-length gp120, matured through boosting with truncated AIDSVAX gp120 variants.IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) correlated with a reduced risk of infection from HIV-1 in the RV144 vaccine trial, the only HIV-1 vaccine trial to date to show any efficacy. Antibodies specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (cluster A region) were induced in the RV144 trial and their ADCC activities were implicated in the vaccine efficacy. We present structural analyses of the antigen epitope targets of several RV144 antibodies specific for this region and C11, an antibody induced in natural infection, to show what the differences are in epitope specificities, mechanism of antigen recognition, and ADCC activities of antibodies induced by vaccination and during the course of HIV infection. Our data suggest that the truncated AIDSVAX gp120 variants used in the boost of the RV144 regimen may have shaped the vaccine response to this region, which could also have contributed to vaccine efficacy.


Asunto(s)
Vacunas contra el SIDA/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Anticuerpos Anti-VIH/química , Vacunas contra el SIDA/administración & dosificación , Secuencia de Aminoácidos , Sitios de Unión de Anticuerpos , Ensayos Clínicos Fase II como Asunto , Cristalografía por Rayos X , Método Doble Ciego , Transferencia Resonante de Energía de Fluorescencia , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Potencia de la Vacuna
15.
ACS Chem Biol ; 15(3): 789-798, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32109354

RESUMEN

The high mannose patch (HMP) of the HIV envelope protein (Env) is the structure most frequently targeted by broadly neutralizing antibodies; therefore, many researchers have attempted to use mimics of this region as a vaccine immunogen. In our previous efforts, vaccinating rabbits with evolved HMP mimic glycopeptides containing Man9 resulted in an overall antibody response targeting the glycan core and linker rather than the full glycan or Manα1→2Man tips of Man9 glycans. A possible reason could be processing of our immunogen by host serum mannosidases. We sought to test whether more prolonged dosing could increase the antibody response to intact glycans, possibly by increasing the availability of intact Man9 to germinal centers. Here, we describe a study investigating the impact of immunization regimen on antibody response by testing immunogen delivery through bolus, an exponential series of mini doses, or a continuously infusing mini-osmotic pump. Our results indicate that, with our glycopeptide immunogens, standard bolus immunization elicited the strongest HIV Env-binding antibody response, even though higher overall titers to the glycopeptide were elicited by the exponential and pump regimens. Antibody selectivity for intact glycan was, if anything, slightly better in the bolus-immunized animals.


Asunto(s)
Vacunas contra el SIDA/metabolismo , Glicopéptidos/química , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/química , Oligosacáridos/química , Vacunas Conjugadas/metabolismo , Animales , Anticuerpos Neutralizantes , Formación de Anticuerpos , Sitios de Unión , Glicosilación , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/orina , Infecciones por VIH/prevención & control , Humanos , Inmunización , Manosidasas/metabolismo , Oligosacáridos/orina , Unión Proteica , Conformación Proteica , Conejos , Bibliotecas de Moléculas Pequeñas/química , Vacunación
16.
ACS Cent Sci ; 5(2): 237-249, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30834312

RESUMEN

Up to ∼20% of HIV-infected individuals eventually develop broadly neutralizing antibodies (bnAbs), and many of these antibodies (∼40%) target a region of dense high-mannose glycosylation on gp120 of the HIV envelope protein, known as the "high-mannose patch" (HMP). Thus, there have been numerous attempts to develop glycoconjugate vaccine immunogens that structurally mimic the HMP and might elicit bnAbs targeting this conserved neutralization epitope. Herein, we report on the immunogenicity of glycopeptides, designed by in vitro selection, that bind tightly to anti-HMP antibody 2G12. By analyzing the fine carbohydrate specificity of rabbit antibodies elicited by these immunogens, we found that they differ from some natural human bnAbs, such as 2G12 and PGT128, in that they bind primarily to the core structures within the glycan, rather than to the Manα1 → 2Man termini (2G12) or to the whole glycan (PGT128). Antibody specificity for the glycan core may result from extensive serum mannosidase trimming of the immunogen in the vaccinated animals. This finding has broad implications for vaccine design aiming to target glycan-dependent HIV neutralizing antibodies.

17.
Tetrahedron ; 72(40): 6091-6098, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28190897

RESUMEN

Recently, we reported a directed evolution method which enabled us to discover sequences of glycopeptides that bind with picomolar affinity to HIV antibody 2G12 and are of interest as HIV vaccine candidates. In this manuscript, we describe the syntheses of several of these large (~11-12 kDa) glycopeptides by a combination of fast flow peptide synthesis and click chemistry. We also discuss the optimization of their attachment to carrier protein CRM197, affording antigenic and immunogenic conjugates ready for animal vaccination.

18.
Acta Crystallogr C ; 69(Pt 2): 183-5, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23377688

RESUMEN

The structure of the title compound, C(7)H(6)BNO(3), a new boron heterocycle, prepared by the condensation of (2-ethoxycarbonylphenyl)boronic acid and hydroxylamine, reveals the specific mode of intramolecular condensation between a phenylboronic acid and an ortho hydroxamic acid substituent. The crystal structure shows that dehydration occurs to form a planar oxazaborinine ring possessing both phenol-like B-O-H and lactam functional groups. In the extended structure, intermolecular hydrogen bonding generates a 14-membered ring. To our knowledge, this is the first crystal structure determination involving a six-membered ring that exhibits consecutive B-OH, O, NH, and C=O functional groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...