Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35159912

RESUMEN

Atomic force microscopy (AFM) was used to investigate the morphology and rigidity of the opportunistic pathogenic yeast, Candida albicans ATCC 10231, during its attachment to surfaces of three levels of nanoscale surface roughness. Non-polished titanium (npTi), polished titanium (pTi), and glass with respective average surface roughness (Sa) values of 389 nm, 14 nm, and 2 nm, kurtosis (Skur) values of 4, 16, and 4, and skewness (Sskw) values of 1, 4, and 1 were used as representative examples of each type of nanoarchitecture. Thus, npTi and glass surfaces exhibited similar Sskw and Skur values but highly disparate Sa. C. albicans cells that had attached to the pTi surfaces exhibited a twofold increase in rigidity of 364 kPa compared to those yeast cells attached to the surfaces of npTi (164 kPa) and glass (185 kPa). The increased rigidity of the C. albicans cells on pTi was accompanied by a distinct round morphology, condensed F-actin distribution, lack of cortical actin patches, and the negligible production of cell-associated polymeric substances; however, an elevated production of loose extracellular polymeric substances (EPS) was observed. The differences in the physical response of C. albicans cells attached to the three surfaces suggested that the surface nanoarchitecture (characterized by skewness and kurtosis), rather than average surface roughness, could directly influence the rigidity of the C. albicans cells. This work contributes to the next-generation design of antifungal surfaces by exploiting surface architecture to control the extent of biofilm formation undertaken by yeast pathogens and highlights the importance of performing a detailed surface roughness characterization in order to identify and discriminate between the surface characteristics that may influence the extent of cell attachment and the subsequent behavior of the attached cells.

2.
Trends Biotechnol ; 38(5): 558-571, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32302580

RESUMEN

Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and proliferation of different cell types has provided an alternative strategy for imparting antibacterial activity to these surfaces. Among the well-recognized engineered models of antibacterial surface topographies, self-organized wrinkles have shown particular promise with respect to their antimicrobial characteristics. Here, we critically review the mechanisms by which wrinkles form on the surface of different types of polymer material and how they interact with various biomolecules and cell types. We also discuss the feasibility of using this antimicrobial strategy in real-life biomedical applications.


Asunto(s)
Antiinfecciosos/química , Materiales Biocompatibles/química , Películas Cinematográficas , Polímeros/química , Antiinfecciosos/uso terapéutico , Materiales Biocompatibles/uso terapéutico , Humanos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Polímeros/uso terapéutico , Propiedades de Superficie/efectos de los fármacos
3.
ACS Appl Bio Mater ; 3(12): 8581-8591, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35019629

RESUMEN

The microbial contamination of surfaces presents a significant challenge due to the adverse effects associated with biofilm formation, particularly on implantable devices. Here, the attachment and biofilm formation of the opportunistic human pathogen, Candida albicans ATCC 10231, were studied on surfaces with decreasing magnitudes of nanoscale roughness. The nanoscale surface roughness of nonpolished titanium, polished titanium, and glass was characterized according to average surface roughness, skewness, and kurtosis. Nonpolished titanium, polished titanium, and glass possessed average surface roughness (Sa) values of 350, 20, and 2.5 nm; skewness (Sskw) values of 1.0, 4.0, and 1.0; and (Skur) values of 3.5, 16, and 4, respectively. These unique characteristics of the surface nanoarchitecture were found to play a key role in limiting C. albicans attachment and modulating the functional phenotypic changes associated with biofilm formation. Our results suggest that surfaces with a specific combination of surface topographical parameters could prevent the attachment and biofilm formation of C. albicans. After 7 days, the density of attached C. albicans cells was recorded to be 230, 70, and 220 cells mm-2 on nonpolished titanium, polished titanium, and glass surfaces, respectively. Despite achieving a very low attachment density, C. albicanscells were only observed to produce hyphae associated with biofilm formation on nonpolished titanium surfaces, possessing the highest degree of surface roughness (Sa = 350 nm). This study provides a more comprehensive picture of the impact of surface architectures on C. albicans attachment, which is beneficial for the design of antifungal surfaces.

4.
Nanoscale ; 11(35): 16455-16462, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31451827

RESUMEN

Nanostructured mechano-bactericidal surfaces represent a promising technology to prevent the incidence of microbial contamination on a variety of surfaces and to avoid bacterial infection, particularly with antibiotic resistant strains. In this work, a regular array of silicon nanopillars of 380 nm height and 35 nm diameter was used to study the release of bacterial cell debris off the surface, following inactivation of the cell due to nanostructure-induced rupture. It was confirmed that substantial bactericidal activity was achieved against Gram-negative Pseudomonas aeruginosa (85% non-viable cells) and only modest antibacterial activity towards Staphylococcus aureus (8% non-viable cells), as estimated by measuring the proportions of viable and non-viable cells via fluorescence imaging. In situ time-lapse AFM scans of the bacteria-nanopillar interface confirmed the removal rate of the dead P. aeruginosa cells from the surface to be approximately 19 minutes per cell, and approximately 11 minutes per cell for dead S. aureus cells. These results highlight that the killing and dead cell detachment cycle for bacteria on these substrata are dependant on the bacterial species and the surface architecture studied and will vary when these two parameters are altered. The outcomes of this work will enhance the current understanding of antibacterial nanostructures, and impact upon the development and implementation of next-generation implants and medical devices.


Asunto(s)
Antibacterianos/química , Farmacorresistencia Bacteriana , Nanoestructuras/química , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Microscopía de Fuerza Atómica , Nanoestructuras/ultraestructura , Prótesis e Implantes , Pseudomonas aeruginosa/ultraestructura , Staphylococcus aureus/ultraestructura , Propiedades de Superficie
5.
Nanoscale ; 10(11): 5089-5096, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29461559

RESUMEN

Wrinkled patterns, which possess an extensive surface area over a limited planar space, can provide surface features ranging across the nano- and microscale that have become an engineering material with the flexibility to be tuneable for a number of technologies. Here, we investigate the surface parameters that influence the attachment response of two model bacteria (P. aeruginosa and S. aureus) to wrinkled gold-coated polystyrene surfaces having topologies at the nano- and microscale. Together with flat gold films as the controls, surface feature heights spanned 2 orders of magnitude (15 nm, 200 nm, and 1 micron). The surface wrinkle topology was shown through confocal laser scanning microscopic, atomic force microscopic and scanning electron microscopic image analyses to consist of air-water interfacial areas unavailable for bacterial attachment, which were also shown to be stable by time-lapsed contact angle measurements. Imposition of the nanoscale wrinkles reduced P. aeruginosa attachment to 57% and S. aureus attachment to 20% of their flat equivalent surfaces whereas wrinkles at the microscale further reduced these attachments to 7.5% and 14.5%, respectively. The density of attachments indicated an inherent species specific selectivity that changed with feature dimension, attributable to the scale of the air-water interfaces in contact with the bacterial cell. Parameters influencing static bacterial attachment were the total projected surface areas minus the air-water interface areas and the scale of these respective air-water interfaces (area distribution) with respect to the cell morphology. The range of these controlling parameters may provide new design principles for the evolving suite of physical anti-biofouling materials not reliant on biocidal agents under development.


Asunto(s)
Adhesión Bacteriana , Incrustaciones Biológicas , Oro , Poliestirenos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Propiedades de Superficie
6.
ACS Omega ; 2(11): 8099-8107, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023573

RESUMEN

Self-organized bacteria have been the subject of interest for a number of applications, including the construction of microbial fuel cells. In this paper, we describe the formation of a self-organized, three-dimensional network that is constructed using Gluconobacter oxydans B-1280 cells in a hydrogel consisting of poly(vinyl alcohol) (PVA) with N-vinyl pyrrolidone (VP) as a cross-linker, in which the bacterial cells are organized in a particular side-by-side alignment. We demonstrated that nonmotile G. oxydans cells are able to reorganize themselves, transforming and utilizing PVA-VP polymeric networks through the molecular interactions of bacterial extracellular polysaccharide (EPS) components such as acetan, cellulose, dextran, and levan. Molecular dynamics simulations of the G. oxydans EPS components interacting with the hydrogel polymeric network showed that the solvent-exposed loops of PVA-VP extended and engaged in bacterial self-encapsulation.

7.
Langmuir ; 32(41): 10744-10751, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27718587

RESUMEN

The protein adsorption of two human plasma proteins-albumin (Alb) and fibronectin (Fn)-onto synthetic nanostructured bactericidal material-black silicon (bSi) surfaces (that contain an array of nanopillars) and silicon wafer (nonstructured) surfaces-was investigated. The adsorption behavior of Alb and Fn onto two types of substrata was studied using a combination of complementary analytical techniques. A two-step Alb adsorption mechanism onto the bSi surface has been proposed. At low bulk concentrations (below 40 µg/mL), the Alb preferentially adsorbed at the base of the nanopillars. At higher bulk concentrations, the Alb adsorbed on the top of the nanopillars. In the case of Fn, the protein preferentially adsorbed on the top of the nanopillars, irrespective of its bulk concentration.

8.
J Mater Chem B ; 3(44): 8704-8710, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-32262727

RESUMEN

Studies of microbial interactions during motility, micro-structuring and colonisation have predominately been limited to surface associated bacteria involving materials such as semi-solid biomolecular hydrogels and thin liquid films. Recently, these surfaces have been extended to synthetic polymers where they provide defined chemistries and structural properties. However, precise details of microbial ingress into the confined fluid volume of synthetic 3-D hydrogel networks and their subsequent microstructuring remain to be defined. Here, we show that Gram-positive and Gram-negative bacteria internally populate mesoporous polyacrylate hydrogels by quantifying: the dynamic advancing population front and the resultant spontaneous self-organisation into well-defined clusters and micro-colonies. Polymer chain conjugated fluorescent nanoparticles indicated that both bacterial clusters and micro-colonies associated directly with the polymer chains of the mesoporous hydrogel. Protonation of the K-polyacrylate made chains more hydrophobic and globular in conformation, reducing the swelling of the hydrogel by half. However, the bacterial population increased by 30% indicating the dominance of hydrophobic and viscoelastic interactions as well as the cation chemistry within the confined fluids of synthetic polymer hydrogels despite pore size reductions of 50%. Synthetic polymer hydrogels having a range of porosities when swollen together with controllable chemical and structural functionality can potentially offer well-defined microenvironments for bacterial populations in advancing biotechnologies such as inoculants and substrates in the production of therapeutic agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...