Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-10, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38600840

RESUMEN

This phytochemistry investigation on the trunk of Morus alba L. resulted in the isolation of three triterpenoids, including a new gammacerane triterpenoid - morusacerane (1); along with two known compounds of betulinic acid (2) and ursolic acid (3). The structure elucidation was thoroughly conducted based on 1D, 2D-NMR and HRESIMS spectra, followed by a comparison with existing literatures. The evaluation on α-glucosidase inhibitory exhibited the great potential of the application of these isolated compounds in diabetes treatments. The results show that morusacerane (1), betulinic acid (2), and ursolic acid (3) demonstrate the strong inhibitory with the IC50 values of 106.1, 11.12, and 7.20 µM, respectively. All of these compounds interacted well with the allosteric site enzyme α-glucosidase MAL32 through H-bonds and hydrophobic interaction.

2.
Nat Prod Res ; : 1-6, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422455

RESUMEN

Five coumarins were isolated from the heartwood of Mansonia gagei, which included two newly discovered compounds, namely 11-hydroxypopulene E (1) and mansorin D (2), along with three previously identified compounds. The structures were determined through the utilisation of comprehensive spectroscopic data, ECD calculations, and a thorough comparison with existing literature data. The α-glucosidase inhibitory activities of all isolated compounds were assessed in yeast. Out of the compounds tested, compound 2 exhibited the most significant activity, displaying a percentage inhibition of 34.33% at a concentration of 200 µM.

3.
Nat Prod Res ; : 1-11, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189341

RESUMEN

Two new rotenoid glycosides named stemonal 11-O-ß-D-glucopyranoside and 6-O-methylstemonal 11-O-ß-D-glucopyranoside together with ten known metabolites were isolated from the rhizomes of Stemona curtisii. The chemical structures of the new compounds were elucidated based on the analysis of their 1D and 2D NMR and HRESIMS, while the sugar unit and absolute configuration were determined by chemical hydrolysis and ECD analysis. Among the tested compounds for anti-α-glucosidase assay, stemonal showed an inhibitory effect (IC50 = 38.67 µM), which is 2.4-fold more potent than acarbose. Cytotoxic evaluation against the lung adenocarcinoma A549 cell line indicated that none of the compounds were strongly active to suppress the cancer cell growth at 100 µM. This work describes the occurrence of rotenoids bearing a sugar moiety, which are reported for the first time in the genus Stemona. The isolated compound's α-glucosidase inhibitory potential provides insight for further investigation of natural rotenoids as anti-diabetic agents.

4.
Sci Rep ; 13(1): 18865, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914757

RESUMEN

Thirty-five 9-O-berberrubine carboxylate derivatives were synthesized and evaluated for yeast α-glucosidase inhibitory activity. All compounds demonstrated better inhibitory activities than the parent compounds berberine (BBR) and berberrubine (BBRB), and a positive control, acarbose. The structure-activity correlation study indicated that most of the substituents on the benzoate moiety such as methoxy, hydroxy, methylenedioxy, benzyloxy, halogen, trifluoromethyl, nitro and alkyl can contribute to the activities except multi-methoxy, fluoro and cyano. In addition, replacing benzoate with naphthoate, cinnamate, piperate or diphenylacetate also led to an increase in inhibitory activities except with phenyl acetate. 9, 26, 27, 28 and 33 exhibited the most potent α-glucosidase inhibitory activities with the IC50 values in the range of 1.61-2.67 µM. Kinetic study revealed that 9, 26, 28 and 33 interacted with the enzyme via competitive mode. These four compounds were also proved to be not cytotoxic at their IC50 values. The competitive inhibition mechanism of these four compounds against yeast α-glucosidase was investigated using molecular docking and molecular dynamics simulations. The binding free energy calculations suggest that 26 exhibited the strongest binding affinity, and its binding stability is supported by hydrophobic interactions with D68, F157, F158 and F177. Therefore, 9, 26, 28 and 33 would be promising candidates for further studies of antidiabetic activity.


Asunto(s)
Berberina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , alfa-Glucosidasas/metabolismo , Berberina/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Benzoatos , Estructura Molecular , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...