Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 8568, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595747

RESUMEN

The extended endocannabinoid system, also termed endocannabinoidome, participates in multiple metabolic functions in health and disease. Physical activity can both have an acute and chronic impact on endocannabinoid mediators, as does diet. In this crossover randomized controlled study, we investigated the influence of diet on the peripheral response to acute maximal aerobic exercise in a sample of active adult women (n = 7) with no underlying metabolic conditions. We compared the impact of 7-day standardized Mediterranean diet (MedDiet) and control diet inspired by Canadian macronutrient intake (CanDiet) on endocannabinoidome and short-chain fatty acid metabolites post maximal aerobic exercise. Overall, plasmatic endocannabinoids, their congeners and some polyunsaturated fatty acids increased significantly post maximal aerobic exercise upon cessation of exercise and recovered their initial values within 1 h after exercise. Most N-acylethanolamines and polyunsaturated fatty acids increased directly after exercise when the participants had consumed the MedDiet, but not when they had consumed the CanDiet. This impact was different for monoacylglycerol endocannabinoid congeners, which in most cases reacted similarly to acute exercise while on the MedDiet or the CanDiet. Fecal microbiota was only minimally affected by the diet in this cohort. This study demonstrates that endocannabinoidome mediators respond to acute maximal aerobic exercise in a way that is dependent on the diet consumed in the week prior to exercise.


Asunto(s)
Dieta Mediterránea , Endocannabinoides , Adulto , Canadá , Endocannabinoides/metabolismo , Ejercicio Físico , Heces , Femenino , Humanos
2.
ISME J ; 14(6): 1410-1421, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32080356

RESUMEN

The ability to measure microbial fitness directly in natural conditions and in interaction with other microbes is a challenge that needs to be overcome if we want to gain a better understanding of microbial fitness determinants in nature. Here we investigate the influence of the natural microbial community on the relative fitness of the North American populations SpB, SpC and SpC* of the wild yeast Saccharomyces paradoxus using DNA barcodes and a soil microcosm derived from soil associated with oak trees. We find that variation in fitness among these genetically distinct groups is influenced by the microbial community. Altering the microbial community load and diversity with an irradiation treatment significantly diminishes the magnitude of fitness differences among populations. Our findings suggest that microbial interactions could affect the evolution of yeast lineages in nature by modulating variation in fitness.


Asunto(s)
Saccharomyces/crecimiento & desarrollo , Saccharomyces/genética , Microbiología del Suelo , Biodiversidad , Quercus/crecimiento & desarrollo , Quercus/microbiología , Saccharomyces/aislamiento & purificación , Suelo/química
3.
Microbiologyopen ; 8(7): e00773, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30569485

RESUMEN

While the use of barcoded collections of laboratory microorganisms and the development of barcode-based cell tracking are rapidly developing in genetics and genomics research, tools to track natural populations are still lacking. The yeast Saccharomyces paradoxus is an emergent microbial model in ecology and evolution. More than five allopatric and sympatric lineages have been identified and hundreds of strains have been isolated for this species, allowing to assess the impact of natural diversity on complex traits. We constructed a collection of 550 barcoded and traceable strains of S. paradoxus, including all three North American lineages SpB, SpC, and SpC*. These strains are diploid, many have their genome fully sequenced and are barcoded with a unique 20 bp sequence that allows their identification and quantification. This yeast collection is functional for competitive experiments in pools as the barcodes allow to measure each lineage's and individual strains' fitness in common conditions. We used this tool to demonstrate that in the tested conditions, there are extensive genotype-by-environment interactions for fitness among S. paradoxus strains, which reveals complex evolutionary potential in variable environments. This barcoded collection provides a valuable resource for ecological genomics studies that will allow gaining a better understanding of S. paradoxus evolution and fitness-related traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...