Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
PLoS One ; 18(9): e0291385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682975

RESUMEN

COI1-mediated perception of jasmonate is critical for plant development and responses to environmental stresses. Monocots such as rice have two groups of COI genes due to gene duplication: OsCOI1a and OsCOI1b that are functionally equivalent to the dicotyledons COI1 and OsCOI2 whose function remains unclear. In order to assess the function of OsCOI2 and its functional redundancy with COI1 genes, we developed a series of rice mutants in the 3 genes OsCOI1a, OsCOI1b and OsCOI2 by CRISPR Cas9-mediated editing and characterized their phenotype and responses to jasmonate. Characterization of OsCOI2 uncovered its important roles in root, leaf and flower development. In particular, we show that crown root growth inhibition by jasmonate relies on OsCOI2 and not on OsCOI1a nor on OsCOI1b, revealing a major function for the non-canonical OsCOI2 in jasmonate-dependent control of rice root growth. Collectively, these results point to a specialized function of OsCOI2 in the regulation of plant development in rice and indicate that sub-functionalisation of jasmonate receptors has occurred in the monocot phylum.


Asunto(s)
Oryza , Oryza/genética , Ciclopentanos , Duplicación de Gen , Inhibición Psicológica
2.
Plant J ; 111(2): 546-566, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35596715

RESUMEN

In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.


Asunto(s)
Oryza , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Rice (N Y) ; 12(1): 69, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31485824

RESUMEN

BACKGROUND: Due to their sessile life style, plant survival is dependent on the ability to build up fast and highly adapted responses to environmental stresses by modulating defense response and organ growth. The phytohormone jasmonate plays an essential role in regulating these plant responses to stress. RESULTS: To assess variation of plant growth responses and identify genetic determinants associated to JA treatment, we conducted a genome-wide association study (GWAS) using an original panel of Vietnamese rice accessions. The phenotyping results showed a high natural genetic variability of the 155 tested rice accessions in response to JA for shoot and root growth. The level of growth inhibition by JA is different according to the rice varieties tested. We conducted genome-wide association study and identified 28 significant associations for root length (RTL), shoot length (SHL), root weight (RTW), shoot weight (SHW) and total weight (TTW) in response to JA treatment. Three common QTLs were found for RTL, RTW and SHL. Among a list of 560 candidate genes found to co-locate with the QTLs, a transcriptome analysis from public database for the JA response allows us to identify 232 regulated genes including several JA-responsive transcription factors known to play a role in stress response. CONCLUSION: Our genome-wide association study shows that common and specific genetic elements are associated with inhibition of shoot and root growth under JA treatment suggesting the involvement of a complex JA-dependent genetic control of rice growth inhibition at the whole plant level. Besides, numerous candidate genes associated to stress and JA response are co-located with the association loci, providing useful information for future studies on genetics and breeding to optimize the growth-defense trade-off in rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...