Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6219, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043718

RESUMEN

Papain-like protease (PLpro) is an attractive drug target for SARS-CoV-2 because it is essential for viral replication, cleaving viral poly-proteins pp1a and pp1ab, and has de-ubiquitylation and de-ISGylation activities, affecting innate immune responses. We employ Deep Mutational Scanning to evaluate the mutational effects on PLpro enzymatic activity and protein stability in mammalian cells. We confirm features of the active site and identify mutations in neighboring residues that alter activity. We characterize residues responsible for substrate binding and demonstrate that although residues in the blocking loop are remarkably tolerant to mutation, blocking loop flexibility is important for function. We additionally find a connected network of mutations affecting activity that extends far from the active site. We leverage our library to identify drug-escape variants to a common PLpro inhibitor scaffold and predict that plasticity in both the S4 pocket and blocking loop sequence should be considered during the drug design process.


Asunto(s)
Mutación , SARS-CoV-2 , SARS-CoV-2/genética , Humanos , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/química , Dominio Catalítico , Antivirales/farmacología , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , COVID-19/virología , Tratamiento Farmacológico de COVID-19 , Modelos Moleculares , Células HEK293
2.
Elife ; 112022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35506657

RESUMEN

De novo-designed receptor transmembrane domains (TMDs) present opportunities for precise control of cellular receptor functions. We developed a de novo design strategy for generating programmed membrane proteins (proMPs): single-pass α-helical TMDs that self-assemble through computationally defined and crystallographically validated interfaces. We used these proMPs to program specific oligomeric interactions into a chimeric antigen receptor (CAR) that we expressed in mouse primary T cells and found that both in vitro CAR T cell cytokine release and in vivo antitumor activity scaled linearly with the oligomeric state encoded by the receptor TMD, from monomers up to tetramers. All programmed CARs stimulated substantially lower T cell cytokine release relative to the commonly used CD28 TMD, which we show elevated cytokine release through lateral recruitment of the endogenous T cell costimulatory receptor CD28. Precise design using orthogonal and modular TMDs thus provides a new way to program receptor structure and predictably tune activity for basic or applied synthetic biology.


Asunto(s)
Antígenos CD28 , Receptores Quiméricos de Antígenos , Animales , Antígenos CD28/metabolismo , Citocinas/metabolismo , Ratones , Dominios Proteicos , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Biol Chem ; 297(1): 100900, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34157285

RESUMEN

Immune-stimulatory ligands, such as major histocompatibility complex molecules and the T-cell costimulatory ligand CD86, are central to productive immunity. Endogenous mammalian membrane-associated RING-CHs (MARCH) act on these and other targets to regulate antigen presentation and activation of adaptive immunity, whereas virus-encoded homologs target the same molecules to evade immune responses. Substrate specificity is encoded in or near the membrane-embedded domains of MARCHs and the proteins they regulate, but the exact sequences that distinguish substrates from nonsubstrates are poorly understood. Here, we examined the requirements for recognition of the costimulatory ligand CD86 by two different MARCH-family proteins, human MARCH1 and Kaposi's sarcoma herpesvirus modulator of immune recognition 2 (MIR2), using deep mutational scanning. We identified a highly specific recognition surface in the hydrophobic core of the CD86 transmembrane (TM) domain (TMD) that is required for recognition by MARCH1 and prominently features a proline at position 254. In contrast, MIR2 requires no specific sequences in the CD86 TMD but relies primarily on an aspartic acid at position 244 in the CD86 extracellular juxtamembrane region. Surprisingly, MIR2 recognized CD86 with a TMD composed entirely of valine, whereas many different single amino acid substitutions in the context of the native TM sequence conferred MIR2 resistance. These results show that the human and viral proteins evolved completely different recognition modes for the same substrate. That some TM sequences are incompatible with MIR2 activity, even when no specific recognition motif is required, suggests a more complicated mechanism of immune modulation via CD86 than was previously appreciated.


Asunto(s)
Antígeno B7-2/química , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Membrana Celular/metabolismo , Regulación hacia Abajo , Células HEK293 , Células HeLa , Humanos , Mutación , Dominios Proteicos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA