Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38097835

RESUMEN

Methylene blue (MB) is hazardous in natural water because this dye causes serious diseases that endangers public health and ecosystems. Photocatalytic degradation is a prominent technique for achieving the effective elimination of dye pollutants from wastewater and contribute vitally to ecology and environmental safety. Herein, Cu2+-substituted ZnFe2O4 nanomaterials (CuxZn1-xFe2O4; x = 0, 0.1, 0.2, 0.3, 0.4, 0.6) were synthesized, characterized, and applied for the photocatalytic degradation of MB dye beneath visible light with the assistance of hydrogen peroxide (H2O2). The feature of the photo-catalysts was determined by XRD, EDX, FTIR, DRS, BET, SEM, and TEM techniques. Incorporation of Cu2+ ions changed the crystalline phase, particle size, morphology, and surface area. The photocatalysis condition was optimized with the following major factors, the amout of doping Cu2+ ions, H2O2 concentration, adsorbent dosage, and MB concentration. As a result, the photocatalytic MB degradation efficiency by Cu0.6Zn0.4Fe2O4 catalyst was 99.83% within 90 min under LED light (λ ≥ 420 nm), which was around 4 folds higher than that of pure ZnFe2O4. The photo-Fenton kinetics were in accordance with the pseudo-first-order kinetic model (R2 = 0.981), giving the highes rate constant of 0.034 min-1. It can be, therefore, concluded that Cu2+ substitution considerably boosted the photocatalytic activity of CuxZn1-xFe2O4 ZnFe2O4, suggesting a bright prospect of Cu0.6Zn0.4Fe2O4 as a photo-catalyst in the dyes wastewater treatment.

2.
RSC Adv ; 13(16): 10650-10656, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37056968

RESUMEN

Rare earth metal doping spinel ferrites offer excellent electronic, magnetic, and photocatalytic properties, but they have not been well explored for environmental mitigation. Herein, we report the facile fabrication of novel CoNd x Fe2-x O4 (x = 0-0.05) photocatalysts based on Nd3+ incorporated into CoFe2O4 for the degradation of Rhodamine B under visible light irradiation. The Nd3+ dopant considerably increased the specific surface area (35 m2 g-1) and enhanced the degradation performance (94.7%) of CoNd x Fe2-x O4 catalysts. Nd3+-doped CoFe2O4 played a role in the formation of radicals, including ˙OH, h+, and ˙O2 -. With high recyclability and performance, CoNd0.05Fe1.95O4 nanoparticles can be efficient and reusable photocatalysts for degrading organic dyes, including Rhodamine B from wastewaters.

3.
Toxics ; 10(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36006142

RESUMEN

In recent years, photocatalysis has been used as an environmentally friendly method for the degradation of organic pigments in water. In this study, Ce3+/Ce4+-doped ZrO2/CuO as a mixed semiconductor oxide was successfully prepared by a one-step hydrothermal method. The Ce3+/Ce4+-doped ZrO2/CuO has shown high degradation efficiency of methylene blue (MB), and the maximum degradation percentage was observed to be 94.5% at 180 min under irradiation visible light. The photocatalytic activity increases significantly by doping Ce3+/Ce4+ in ZrO2/CuO for MB degradation. Ce3+/Ce4+ doping is shown to reduce the (e-/h+) recombination rate and improve the charge transfer, leading to enhanced photocatalytic activity of materials. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), FTIR, EDS, BET and diffuse reflectance spectroscopy (DRS).

4.
Environ Res ; 214(Pt 4): 114130, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35998691

RESUMEN

The present work focused on the synthesis of novel ZnLaxFe2-xO4 catalysts (x = 0, 0.01, 0.03, 0.05) and their utilization for the photocatalytic degradation of Rhodamine B dye. Structurally, the band gap energy of the catalysts tended to decrease (1.94-1.70 eV) with increasing the amount of La3+ dopant. ZnLa0.05Fe1.95O4 had an average particle size (40 nm), high surface area (41.07 m2 g-1) and large pore volume (0.186 cm3 g-1). Moreover, the effect of doping ratio, reaction time, H2O2 concentration, catalyst loading on the treatment performance of La3+ substituted ZnFe2O4 nanocomposites was investigated. ZnLa0.05Fe1.95O4/H2O2 system exhibited the highest degradation efficiency of 99.5% and nonlinear pseudo first-order kinetic reaction rate (14.8 × 10-3 min-1) in the presence of visible light irradiation. The key role of reactive oxygen species involving •O2- and •OH radicals was well explained through the scavenger study. A plausible mechanism of the degradation of Rhodamine B dye was also proposed. Due to two advantageous points including high recyclability (up to 4 cycles) and stability, La3+ substituted ZnFe2O4 nanocomposites can be an effective and competitive catalyst for the visible light-driven photodegradation of toxic dyes in the real wastewaters.

5.
Materials (Basel) ; 14(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921759

RESUMEN

In this study, nanocrystalline ZnNdxFe2-xO4 ferrites with x = 0.0, 0.01, 0.03 and 0.05 were fabricated and used as a catalyst for dye removal potential. The effect of Nd3+ ions substitution on the structural, optical and photo-Fenton activity of ZnNdxFe2-xO4 has been investigated. The addition of Nd3+ ions caused a decrease in the grain size of ferrites, the reduction of the optical bandgap energies and thus could be well exploited for the catalytic study. The photocatalytic activity of the ferrite samples was evaluated by the degradation of Rhodamine B (RhB) in the presence of H2O2 under visible light radiation. The results indicated that the ZnNdxFe2-xO4 samples exhibited higher removal efficiencies than the pure ZnFe2O4 ferrites. The highest degradation efficiency was 98.00%, attained after 210 min using the ZnNd0.03Fe1.97O4 sample. The enhanced photocatalytic activity of the ZnFe2O4 doped with Nd3+ is explained due to the efficient separation mechanism of photoinduced electron and holes. The effect of various factors (H2O2 oxidant concentration and catalyst loading) on the degradation of RhB dye was clarified.

6.
Materials (Basel) ; 12(8)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013722

RESUMEN

Lanthanum (La)-doped zinc oxide nanoparticles were synthesized with different La concentrations by employing a gel combustion method using poly(vinyl alcohol) (PVA). The as-synthesized photocatalysts were characterized using various techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), photoluminescence (PL) spectroscopy, and UV-visible absorption spectroscopy. The average size of ZnO nanoparticles decreased from 34.3 to 10.3 nm with increasing concentrations of La, and the band gap, as evaluated by linear fitting, decreased from 3.10 to 2.78 eV. Additionally, it was found that the photocatalytic activity of doped samples, as investigated by using methyl orange dye under visible lights, improved in response to the increase in La concentration. The decomposition of methyl orange reached 85.86% after 150 min in visible light using La0.1Zn0.9O as the photocatalyst.

7.
CNS Neurosci Ther ; 19(7): 461-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23462281

RESUMEN

Parkinson disease (PD) is the second most common form of neurodegeneration among elderly individuals. PD is clinically characterized by tremors, rigidity, slowness of movement, and postural imbalance. In this paper, we review the evidence for an association between PD and thiamine. Interestingly, a significant association has been demonstrated between PD and low levels of serum thiamine, and thiamine supplements appear to have beneficial clinical effects against PD. Multiple studies have evaluated the connection between thiamine and PD pathology, and candidate pathways involve the transcription factor Sp1, p53, Bcl-2, caspase-3, tyrosine hydroxylase, glycogen synthase kinase-3ß, vascular endothelial growth factor, advanced glycation end products, nuclear factor kappa B, mitogen-activated protein kinase, and the reduced form of nicotinamide adenine dinucleotide phosphate. Thus, a review of the literature suggests that thiamine plays a role in PD, although further investigation into the effects of thiamine in PD is needed.


Asunto(s)
Enfermedad de Parkinson/tratamiento farmacológico , Tiamina/uso terapéutico , Vitaminas/uso terapéutico , Animales , Humanos , Enfermedad de Parkinson/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tiamina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...