Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 40(5): 819-834, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33725150

RESUMEN

KEY MESSAGE: Ectopic expression of Glycine max two-component system member GmHP08 in Arabidopsis enhanced drought tolerance of transgenic plants, possibly via ABA-dependent pathways. Phosphorelay by two-component system (TCS) is a signal transduction mechanism which has been evolutionarily conserved in both prokaryotic and eukaryotic organisms. Previous studies have provided lines of evidence on the involvement of TCS genes in plant perception and responses to environmental stimuli. In this research, drought-associated functions of GmHP08, a TCS member from soybean (Glycine max L.), were investigated via its ectopic expression in Arabidopsis system. Results from the drought survival assay showed that GmHP08-transgenic plants exhibited higher survival rates compared with their wild-type (WT) counterparts, indicating better drought resistance of the former group. Analyses revealed that the transgenic plants outperformed the WT in various regards, i.e. capability of water retention, prevention of hydrogen peroxide accumulation and enhancement of antioxidant enzymatic activities under water-deficit conditions. Additionally, the expression of stress-marker genes, especially antioxidant enzyme-encoding genes, in the transgenic plants were found greater than that of the WT plants. In contrary, the expression of SAG13 gene, one of the senescence-associated genes, and of several abscisic acid (ABA)-related genes was repressed. Data from this study also revealed that the ectopic expression lines at germination and early seedling development stages were hypersensitive to exogenous ABA treatment. Taken together, our results demonstrated that GmHP08 could play an important role in mediating plant response to drought, possibly via an ABA-dependent manner.


Asunto(s)
Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Sequías , Expresión Génica Ectópica/genética , Expresión Génica Ectópica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
2.
Plants (Basel) ; 9(4)2020 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-32290594

RESUMEN

Two-component systems (TCSs) have been identified as participants in mediating plant response to water deficit. Nevertheless, insights of their contribution to plant drought responses and associated regulatory mechanisms remain limited. Herein, a soybean response regulator (RR) gene RR34, which is the potential drought-responsive downstream member of a TCS, was ectopically expressed in the model plant Arabidopsis for the analysis of its biological roles in drought stress response. Results from the survival test revealed outstanding recovery ratios of 52%-53% in the examined transgenic lines compared with 28% of the wild-type plants. Additionally, remarkedly lower water loss rates in detached leaves as well as enhanced antioxidant enzyme activities of catalase and superoxide dismutase were observed in the transgenic group. Further transcriptional analysis of a subset of drought-responsive genes demonstrated higher expression in GmRR34-transgenic plants upon exposure to drought, including abscisic acid (ABA)-related genes NCED3, OST1, ABI5, and RAB18. These ectopic expression lines also displayed hypersensitivity to ABA treatment at germination and post-germination stages. Collectively, these findings indicated the ABA-associated mode of action of GmRR34 in conferring better plant performance under the adverse drought conditions.

3.
Biomolecules ; 9(11)2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703428

RESUMEN

The NAC (NAM, ATAF1/2, CUC2) transcription factors are widely known for their various functions in plant development and stress tolerance. Previous studies have demonstrated that genetic engineering can be applied to enhance drought tolerance via overexpression/ectopic expression of NAC genes. In the present study, the dehydration- and drought-inducible GmNAC109 from Glycine max was ectopically expressed in Arabidopsis (GmNAC109-EX) plants to study its biological functions in mediating plant adaptation to water deficit conditions. Results revealed an improved drought tolerance in the transgenic plants, which displayed greater recovery rates by 20% to 54% than did the wild-type plants. In support of this finding, GmNAC109-EX plants exhibited lower water loss rates and decreased endogenous hydrogen peroxide production in leaf tissues under drought, as well as higher sensitivity to exogenous abscisic acid (ABA) treatment at germination and early seedling development stages. In addition, analyses of antioxidant enzymes indicated that GmNAC109-EX plants possessed stronger activities of superoxide dismutase and catalase under drought stress. These results together demonstrated that GmNAC109 acts as a positive transcriptional regulator in the ABA-signaling pathway, enabling plants to cope with adverse water deficit conditions.


Asunto(s)
Arabidopsis/genética , Glycine max/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Sequías , Expresión Génica Ectópica/genética , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/fisiología , Estrés Fisiológico/genética
4.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906240

RESUMEN

Being master regulators of gene expression, transcription factors (TFs) play important roles in determining plant growth, development and reproduction. To date, many TFs have been shown to positively mediate plant responses to environmental stresses. In the current study, the biological functions of a stress-responsive NAC [NAM (No Apical Meristem), ATAF1/2 (Arabidopsis Transcription Activation Factor1/2), CUC2 (Cup-shaped Cotyledon2)]-TF encoding gene isolated from soybean (GmNAC019) in relation to plant drought tolerance and abscisic acid (ABA) responses were investigated. By using a heterologous transgenic system, we revealed that transgenic Arabidopsis plants constitutively expressing the GmNAC019 gene exhibited higher survival rates in a soil-drying assay, which was associated with lower water loss rate in detached leaves, lower cellular hydrogen peroxide content and stronger antioxidant defense under water-stressed conditions. Additionally, the exogenous treatment of transgenic plants with ABA showed their hypersensitivity to this phytohormone, exhibiting lower rates of seed germination and green cotyledons. Taken together, these findings demonstrated that GmNAC019 functions as a positive regulator of ABA-mediated plant response to drought, and thus, it has potential utility for improving plant tolerance through molecular biotechnology.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis , Resistencia a la Enfermedad/genética , Glycine max/genética , Plantas Modificadas Genéticamente , Proteínas de Soja , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Deshidratación/genética , Deshidratación/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas de Soja/biosíntesis , Proteínas de Soja/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA