Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293401

RESUMEN

Age-related macular degeneration (AMD) is a global leading cause of visual impairment in older populations. 'Wet' AMD, the most common subtype of this disease, occurs when pathological angiogenesis infiltrates the subretinal space (choroidal neovascularization), causing hemorrhage and retinal damage. Gold standard anti-vascular endothelial growth factor (VEGF) treatment is an effective therapy, but the long-term prevention of visual decline has not been as successful. This warrants the need to elucidate potential VEGF-independent pathways. We generated blood out-growth endothelial cells (BOECs) from wet AMD and normal control subjects, then induced angiogenic sprouting of BOECs using a fibrin gel bead assay. To deconvolute endothelial heterogeneity, we performed single-cell transcriptomic analysis on the sprouting BOECs, revealing a spectrum of cell states. Our wet AMD BOECs share common pathways with choroidal neovascularization such as extracellular matrix remodeling that promoted proangiogenic phenotype, and our 'activated' BOEC subpopulation demonstrated proinflammatory hallmarks, resembling the tip-like cells in vivo. We uncovered new molecular insights that pathological angiogenesis in wet AMD BOECs could also be driven by interleukin signaling and amino acid metabolism. A web-based visualization of the sprouting BOEC single-cell transcriptome has been created to facilitate further discovery research.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular Húmeda , Humanos , Neovascularización Coroidal/tratamiento farmacológico , Transcriptoma , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Degeneración Macular Húmeda/tratamiento farmacológico , Factores de Crecimiento Endotelial Vascular , Interleucinas/uso terapéutico , Aminoácidos , Fibrina , Inhibidores de la Angiogénesis/uso terapéutico
2.
Comput Struct Biotechnol J ; 18: 3788-3795, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304470

RESUMEN

The fungi kingdom is composed of eukaryotic heterotrophs, which are responsible for balancing the ecosystem and play a major role as decomposers. They also produce a vast diversity of secondary metabolites, which have antibiotic or pharmacological properties. However, our lack of knowledge of gene function in fungi precludes us from tailoring them to our needs and tapping into their metabolic diversity. To help remedy this, we gathered genomic and gene expression data of 19 most widely-researched fungi to build an online tool, fungi.guru, which contains tools for cross-species identification of conserved pathways, functional gene modules, and gene families. We exemplify how our tool can elucidate the molecular function, biological process and cellular component of genes involved in various biological processes, by identifying a secondary metabolite pathway producing gliotoxin in Aspergillus fumigatus, the catabolic pathway of cellulose in Coprinopsis cinerea and the conserved DNA replication pathway in Fusarium graminearum and Pyricularia oryzae. The tool is available at www.fungi.guru.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA