Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688042

RESUMEN

One of the challenges in the field of human activity recognition in smart homes based on IoT sensors is the variability in the recorded data. This variability arises from differences in home configurations, sensor network setups, and the number and habits of inhabitants, resulting in a lack of data that accurately represent the application environment. Although simulators have been proposed in the literature to generate data, they fail to bridge the gap between training and field data or produce diverse datasets. In this article, we propose a solution to address this issue by leveraging the concept of digital twins to reduce the disparity between training and real-world data and generate more varied datasets. We introduce the Virtual Smart Home, a simulator specifically designed for modeling daily life activities in smart homes, which is adapted from the Virtual Home simulator. To assess its realism, we compare a set of activity data recorded in a real-life smart apartment with its replication in the VirtualSmartHome simulator. Additionally, we demonstrate that an activity recognition algorithm trained on the data generated by the VirtualSmartHome simulator can be successfully validated using real-life field data.


Asunto(s)
Actividades Cotidianas , Humanos , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , Registros , Hábitos
2.
Biomed Res Int ; 2022: 5667223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309176

RESUMEN

Adherence to exercise programs for chronic low back pain (CLBP) is a major issue. The R-COOL feasibility study evaluated humanoid robot supervision of exercise for CLBP. Aims are as follows: (1) compare stretching sessions between the robot and a physiotherapist (control), (2) compare clinical outcomes between groups, and (3) evaluate participant perceptions of usability and satisfaction and therapist acceptability of the robot system. Prospective, randomized, controlled, single-blind, 2-centre study comparing a 3-week (3 hours/day, 5 days/week) physical activity program. Stretching sessions (30 minutes/day) were supervised by a physiotherapist (control) or the robot. Primary outcome: daily physical activity time (adherence). Secondary outcomes: lumbar pain, disability and fear and beliefs, participant perception of usability (system usability scale) and satisfaction, and physiotherapist acceptability (technology acceptance model). Clinical outcomes were compared between groups with a Student t-test and perceptions with a Wilcoxon test. Data from 27 participants were analysed (n = 15 control and n = 12 robot group). Daily physical activity time did not differ between groups, but adherence declined (number of movements performed with the robot decreased from 82% in the first week to 72% in the second and 47% in the third). None of the clinical outcomes differed between groups. The median system usability scale score was lower in the robot group: 58 (IQR 11.8) points vs. 87 (IQR 9.4) in the control group at 3 weeks (p < 0.001). Median physiotherapist rating of the technology acceptance model was <3 points, suggesting a negative opinion of the robot. In conclusion, adherence to robot exercise reduced over time; however, lumbar pain, disability, or fear and beliefs did not differ between groups. The results of the participant questionnaires showed that they were willing to use such a system, although several technical issues suggested the KERAAL system could be improved to provide fully autonomous supervision of physical activity sessions.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Robótica , Dolor Crónico/terapia , Ejercicio Físico , Terapia por Ejercicio/métodos , Estudios de Factibilidad , Humanos , Dolor de la Región Lumbar/terapia , Estudios Prospectivos , Método Simple Ciego
3.
Sensors (Basel) ; 21(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34577243

RESUMEN

Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy, and health of their residents, especially for the elderly and dependent. To provide such services, a smart home must be able to understand the daily activities of its residents. Techniques for recognizing human activity in smart homes are advancing daily. However, new challenges are emerging every day. In this paper, we present recent algorithms, works, challenges, and taxonomy of the field of human activity recognition in a smart home through ambient sensors. Moreover, since activity recognition in smart homes is a young field, we raise specific problems, as well as missing and needed contributions. However, we also propose directions, research opportunities, and solutions to accelerate advances in this field.


Asunto(s)
Aprendizaje Profundo , Internet de las Cosas , Anciano , Algoritmos , Actividades Humanas , Humanos , Calidad de Vida
4.
Dementia (London) ; 18(4): 1568-1595, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-28699364

RESUMEN

Assistive technologies became pervasive and virtually present in all our life domains. They can be either an enabler or an obstacle leading to social exclusion. The Fondation Médéric Alzheimer gathered international experts of dementia care, with backgrounds in biomedical, human and social sciences, to analyze how assistive technologies can address the capabilities of people with dementia, on the basis of their needs. Discussion covered the unmet needs of people with dementia, the domains of daily life activities where assistive technologies can provide help to people with dementia, the enabling and empowering impact of technology to improve their safety and wellbeing, barriers and limits of use, technology assessment, ethical and legal issues. The capability approach (possible freedom) appears particularly relevant in person-centered dementia care and technology development. The focus is not on the solution, rather on what the person can do with it: seeing dementia as disability, with technology as an enabler to promote capabilities of the person, provides a useful framework for both research and practice. This article summarizes how these concepts took momentum in professional practice and public policies in the past 15 years (2000-2015), discusses current issues in the design, development and economic model of assistive technologies for people with dementia, and covers how these technologies are being used and assessed.


Asunto(s)
Demencia/rehabilitación , Personas con Discapacidad/rehabilitación , Investigación , Dispositivos de Autoayuda , Diseño de Equipo , Humanos , Poder Psicológico
5.
Front Neurorobot ; 12: 87, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30670961

RESUMEN

We aim at a robot capable to learn sequences of actions to achieve a field of complex tasks. In this paper, we are considering the learning of a set of interrelated complex tasks hierarchically organized. To learn this high-dimensional mapping between a continuous high-dimensional space of tasks and an infinite dimensional space of unbounded sequences of actions, we introduce a new framework called "procedures", which enables the autonomous discovery of how to combine previously learned skills in order to learn increasingly complex combinations of motor policies. We propose an active learning algorithmic architecture, capable of organizing its learning process in order to achieve a field of complex tasks by learning sequences of primitive motor policies. Based on heuristics of active imitation learning, goal-babbling and strategic learning using intrinsic motivation, our algorithmic architecture leverages our procedures framework to actively decide during its learning process which outcome to focus on and which exploration strategy to apply. We show on a simulated environment that our new architecture is capable of tackling the learning of complex motor policies by adapting the complexity of its policies to the task at hand. We also show that our "procedures" enable the learning agent to discover the task hierarchy and exploit his experience of previously learned skills to learn new complex tasks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA