Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Organometallics ; 42(23): 3418-3427, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38098646

RESUMEN

Metal-ligand cooperation can facilitate the activation of chemical bonds, opening reaction pathways of interest for catalyst development. In this context, olefins occupying the central position of a diphosphine pincer ligand (PC=CP) are emerging as reversible H atom acceptors, e.g., for H2 activation. Here, we report on the reactivity of nickel complexes of PC=CP ligands with a terminal alkyne, for which two competing pathways are observed. First, cooperative and reversible C-H bond activation generates a Ni(II) alkyl/alkynyl complex as the kinetic product. Second, in the absence of a bulky substituent on the olefin, two alkyne molecules are incorporated in the ligand structure to form a conjugated triene bound to Ni(0). The mechanisms of these processes are studied by density functional theory calculations supported by experimental observations.

2.
Sci Rep ; 12(1): 14662, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038621

RESUMEN

Ancient charcoal fragments, produced by the use of wood as fuel in archaeological contexts or during natural or anthropic forest fires, persist in soil and sediments over centuries to millennia. They thus offer a unique window to reconstruct past climate, especially palaeo-precipitation regimes thanks to their stable carbon isotope composition. However, the initial δ13C of wood is slightly modified as a function of the carbonisation temperature. Carbonisation-induced 13C fractionation is classically investigated through a transfer function between experimental carbonisation temperatures and the carbon content. This approach assumes that the carbon content is conservative through time in ancient charcoals and neglects the potential impact of post-depositional oxidation occurring in soils and sediments. In the present study, we first show that post-depositional oxidation can lead to a large underestimation of past carbonisation temperatures, thereby minimising the estimation of carbonisation-induced 13C fractionations and possibly biasing δ13C-based climate reconstructions. Secondly, by combining carbon content, Fourier-transform infrared and Raman spectroscopy, we propose a new framework to assess the carbonisation temperatures registered in ancient charcoals. This new framework paves the way to reassessing δ13C-based climate reconstruction.


Asunto(s)
Carbón Orgánico , Suelo , Carbono , Isótopos de Carbono/análisis , Carbón Orgánico/química , Clima , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...