Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dent Mater ; 38(12): 1855-1865, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36202660

RESUMEN

OBJECTIVES: In this paper we propose embedding natural fillers, such as pristine and functionalized chitin nanocrystals, into resin adhesives to produce photopolymerizable dental filled adhesives with enhanced biocompatibility, hydrophobicity, mechanical resistance, and anti-bacterial properties. METHODS: Chitin nanocrystals (ChNC) were functionalized with decanoyl chloride and methacrylic anhydride to produce ChNC-C10 and ChNC-MA, respectively. These hydrophobically functionalized chitin nanocrystals were incorporated into a resin adhesive at concentrations of 0.5-3.0 wt% to assess the materials' physical and mechanical properties through Fourier-transform infrared (FTIR) spectroscopy, solid-state NMR spectroscopy, X-ray diffraction (XRD), elemental analysis, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), flexural strength, microhardness, and water sorption tests. RESULTS: The analytical techniques confirmed the successful preparation of chitin nanocrystals from commercial chitin powder derived from shrimp shells and the efficient hydrophobization of their surface. Electron microscope images indicated that the increased hydrophobicity of ChNC-C10 promotes the formation of layered structures throughout the resin adhesive, while ChNC-MA tends to form aggregates in the matrix. Adhesives filled with ChNC-C10 enhanced their flexural strength, microhardness, and thermal stability and decreased their water sorption and degree of conversion. Adhesives filled with ChNC-MA resulted in improvements in microhardness, in water sorption and degree of conversion, although they did not exhibit augmentation of their flexural strength and thermal stability. SIGNIFICANCE: In light of the improved physical and mechanical properties with respect to the control, resin adhesives filled with anti-bacterial chitin nanocrystals are promising new materials for dental applications, especially those filled with low/moderate amounts of ChNC-C10.


Asunto(s)
Cementos Dentales , Nanopartículas , Cementos Dentales/química , Quitina , Ensayo de Materiales , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Resinas Sintéticas/química , Agua/química , Propiedades de Superficie , Cementos de Resina/química , Resinas Compuestas/química
2.
Toxics ; 10(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36136493

RESUMEN

Toxic metal pollution influences the lives of diverse aquatic organisms and humans who consume contaminated aquatic products. However, its potential impacts on aquatic organism health and, thus, ecological health, have been neglected in many regions. This research was carried out to contribute to filling that knowledge gap. Three freshwater fish species in the Nhue−Day River basin, Vietnam, have been chosen to study the bioaccumulation of metals (Zn, Cu, Pb, and Cd) in the tissues (livers, kidneys, gills) and their effects on fish physiological health (changes in the oxidative-GST activity, and physiological biomarkers-energy reserves, respectively) from 2013 to 2017. The extensive results revealed significant spatial and temporal variations in metal concentrations in tissues of common carp (Cyprinus carpio), silver carp (Hypothalmic molitrix), and tilapia (Oreochromis niloticus), and well correlated to their concentration in the water (p < 0.05). Fish bioaccumulated metals in the following order: Zn > Cu > Pb > Cd, with more in the kidneys and livers (spring and summer) than in other tissues. Metal accumulation in O. niloticus and C. carpio was higher than in H. molitrix. Biomarker responses (except for glycogen variation) were also higher during warm seasons. Changes in metal levels in water and fish tissues caused variations in biomarkers in the respective fish tissues, particularly in the livers, as demonstrated by significant correlations of metal concentrations in water and fish tissues to biochemical and physiological responses (p < 0.05). The findings suggest that metal pollution in the river basin adversely impacts the physiological health of both wild and cultured fish. Seasonal shifts in the levels of metal accumulation and biomarkers could be connected to species-specific differences in physiology and the levels of metals in environments. This biomarker set is simple but effective in assessing the impact of metal pollution on fish health and, hence, the aquatic ecosystem. This is one of the first biomonitoring studies to assist in designing better water management strategies for the Nhue−Day River basin.

3.
Biomacromolecules ; 21(3): 1295-1302, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32053370

RESUMEN

The introduction of polymers into a chiral nematic cellulose nanocrystal (CNC) matrix allows for the tuning of optical and mechanical properties, enabling the development of responsive photonic materials. In this study, we explored the incorporation of hydroxypropyl cellulose (HPC) into a CNC film prepared by slow evaporation. In the composite CNC/HPC thin films, the CNCs adopt a chiral nematic structure, which can selectively reflect certain wavelengths of light to yield a colored film. The color could be tuned across the visible spectrum by changing the concentration or molecular weight of the HPC. Importantly, the composite films were more flexible than pure CNC films with up to a ten-fold increase in elasticity and a decrease in stiffness and tensile strength of up to six times and four times, respectively. Surface modification of the films with methacrylate groups increased the hydrophobicity of the films, and therefore, the water stability of these materials was also improved.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/análogos & derivados , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros
4.
Solid State Nucl Magn Reson ; 97: 31-39, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30597399

RESUMEN

Cellulose nanocrystal films with either disordered or chiral nematic structures of varying helical pitch were investigated using 23Na solid-state nuclear magnetic resonance (NMR) spectroscopy. Spin lattice relaxation of 1H correlated with 23Na analyzed by indirect observation using polarization transfer from 1H nuclei to 23Na nuclei showed that the Na+ cations are well hydrated in the cellulose nanocrystal films. Linewidth analysis in solid-state 23Na NMR showed that the Na+ cations move in confined spaces, and that the Na+ cations in the film having disordered structure are more dynamic than in the films having ordered structure. From lineshape analysis of the 23Na 2D nutation NMR spectra, we can distinguish the Na+ environments within the ordered and disordered films, and find trends in anisotropic interaction parameters between ordered samples with different pitches. These are the first detailed 23Na NMR spectroscopic studies of CNC-Na+ films, and they show that this technique may be a powerful probe for characterizing the extent of order in nanocellulose samples.

5.
ACS Omega ; 3(1): 86-95, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30023767

RESUMEN

Simultaneous integration of photon emission and biocompatibility into nanoparticles is an interesting strategy to develop applications of advanced optical materials. In this work, we present the synthesis of biocompatible optical nanocomposites from the combination of near-infrared luminescent lanthanide nanoparticles and water-soluble chitosan. NaYF4:Yb,Er upconverting nanocrystal guests and water-soluble chitosan hosts are prepared and integrated together into biofunctional optical composites. The control of aqueous dissolution, gelation, assembly, and drying of NaYF4:Yb,Er nanocolloids and chitosan liquids allowed us to design novel optical structures of spongelike aerogels and beadlike microspheres. Well-defined shape and near-infrared response lead upconverting nanocrystals to serve as photon converters to couple with plasmonic gold (Au) nanoparticles. Biocompatible chitosan-stabilized Au/NaYF4:Yb,Er nanocomposites are prepared to show their potential use in biomedicine as we find them exhibiting a half-maximal effective concentration (EC50) of 0.58 mg mL-1 for chitosan-stabilized Au/NaYF4:Yb,Er nanorods versus 0.24 mg mL-1 for chitosan-stabilized NaYF4:Yb,Er after 24 h. As a result of their low cytotoxicity and upconverting response, these novel materials hold promise to be interesting for biomedicine, analytical sensing, and other applications.

6.
Biomater Sci ; 6(3): 651-660, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29460928

RESUMEN

Inspired by nature, collagen is an outstanding polypeptide utilized to exploit its bioactivity and material design for healthcare technologies. In this study, we describe the self-aggregation of water-dispersible nanocollagen helices upon solidification to fabricate different forms of natural collagen materials. Chemically extracted native collagen fibrils are uniform anisotropic nanoparticles with an average diameter of about 50 nm and a high aspect ratio. The as-prepared collagen nanofibrils are soluble in sodium acetate-acetic acid buffer and are dispersible in water, thus generating collagen liquids that are used as distinct biopolymer precursors for materials development. Our interesting findings indicate that water-dispersible collagen-derived alcogels undergo critical point drying to self-arrange hierarchical nanofibrils into helix bundles in collagen sponge-like aerogels. Notably, using lyophilization to remove water in the biopolymer dispersion, a full regeneration of solidified fibers is achieved, producing collagen aerogels with lightweight characteristics similar to natural cottons. The self-aggregation of water-dispersible collagen occurs under freeze-drying conditions to turn individual nanofibrils into sheets with layered structures in the aerogel networks. The development of transparent, water resistant collagen bioplastic-like membranes was achieved by supramolecular self-assembly of water-dispersible collagen nanofibrils. Our efforts present a reliable concept in soft matter for creating promising collagen examples of liquids, hydrogels, aerogels, and membranes to increase utilization value of native collagen for biomedicine, pharmaceuticals, cosmetics, and nutrients.


Asunto(s)
Colágeno/química , Geles/química , Nanofibras/química , Interacciones Hidrofóbicas e Hidrofílicas , Polimerizacion , Acetato de Sodio/química
7.
Nanoscale ; 10(8): 3805-3812, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29412210

RESUMEN

Novel aerogel materials with periodic structures derived from chiral nematic liquid crystalline cellulose nanocrystals (CNCs) are reported. The liquid crystalline structure of phase-separated CNCs is locked by a simple solvent exchange method or silica condensation. Both cellulose and silica/cellulose aerogel materials were obtained after critical point drying, and subsequent calcination of the silica/cellulose composite afforded a silica aerogel with periodic order. Gas adsorption and electron microscopy studies revealed that these materials have high surface areas and a unique chiral nematic structure imparted from the helicoidal CNC template. This is a new, scalable approach to aerogel materials with highly anisotropic structures. The high porosity and periodic, chiral features of these new materials may make them suitable for applications that require anisotropic properties or as hard templates for the construction of other ordered aerogels.

8.
Soft Matter ; 13(40): 7292-7299, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28951935

RESUMEN

Bioinspired materials have aroused great interest as their inherent biocompatible and structural characteristics have given rise to sustainable applications. In this work, we have reported the phase and morphology transformation of chitosan from crystalline nanofibrils into amorphous sheets for fabricating sustainable materials. Acetylation-induced aqueous dissolution of native chitosan nanofibrils affords water-soluble chitosan as a biopolymeric liquid. Water-soluble chitosan macromolecules self-aggregate into amorphous sheets on solidification, presenting an interesting way to inspire new structures of chitosan assemblies. Through control over gelation, lyophilization, and self-assembled confinement of water-soluble chitosan, we have fabricated novel chitosan materials including filaments, aerogels, microspheres, and plastics that are promising for sustainable use.

9.
ACS Appl Mater Interfaces ; 9(36): 30812-30820, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28846379

RESUMEN

Chitin nanocrystals have been used as a liquid crystalline template to fabricate layered oxide semiconductor aerogels. Anisotropic chitin liquid crystals are transformed to sponge-like aerogels by hydrothermally cross-linked gelation and lyophilization-induced solidification. The hydrothermal gelation of chitin aqueous suspensions then proceeds with peroxotitanate to form hydrogel composites that recover to form aerogels after freeze-drying. The homogeneous peroxotitanate/chitin composites are calcined to generate freestanding titania aerogels that exhibit the nanostructural integrity of layered chitin template. Our extended investigations show that coassembling chitin nanocrystals with other metal-based precursors also yielded semiconductor aerogels of perovskite BaTiO3 and CuOx nanocrystals. The potential of these materials is great to investigate these chitin sponges for biomedicine and these semiconductor aerogels for photocatalysis, gas sensing, and other applications. Our results present a new aerogel templating method of highly porous, ultralight materials with chitin liquid crystals.

10.
Nanoscale ; 7(31): 13215-23, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26186490

RESUMEN

We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering.

11.
Chem Commun (Camb) ; 51(4): 624-35, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25302344

RESUMEN

The evolution of nanotechnology has inspired materials scientists to invent nanostructures with achievements in numerous practical applications, particularly in catalysis. The great advancements typically involve flexible control over the unique properties of the nanomaterial through tuning their structural geometries and components. In this Feature Article, we present the recent progress of our recent research and that of other groups in tailoring the assembly, interfaces, and porosity of diverse inorganic nanostructures. The enhanced catalytic properties of the engineered nanostructures are discussed in relation to photocatalysis, with special emphasis on solar energy conversion, including water splitting, CO2 reduction, and organic photodecomposition. Considering their attributes of superior catalytic performance and long-term durability, the development of economical, active nanocatalysts opens up practical opportunities for endeavours in sustainable energy conversion and other applied fields. This review is expected to introduce readers to the general principles of engineering the nanostructured features of the inorganic nanomaterials capable of improving solar photocatalytic efficiency.

12.
Chem Commun (Camb) ; 49(96): 11296-8, 2013 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-24154544

RESUMEN

We have discovered that the self-assembly of cellulose nanocrystals (CNCs) into chiral nematic phases varies significantly with the substrate and evaporation rate. These variables allow the reflectance peak of iridescent chiral nematic films of CNCs and mesoporous silica templated from CNCs to be tuned over a wide range of wavelengths.

13.
Chemistry ; 19(45): 15148-54, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24150881

RESUMEN

Liquid crystalline phases can be used to impart order into inorganic solids, creating materials that mimic natural architectures. Herein, mesoporous silica and organosilica films with layered structures and high surface areas have been templated by nanocrystalline chitin. Aqueous suspensions of spindle-shaped chitin nanocrystals were prepared by sequential deacetylation and hydrolysis of chitin fibrils isolated from king crab shells. The nanocrystalline chitin self-assembles into a nematic liquid-crystalline phase that has been used to template silica and organosilica composites. Removal of the chitin template by either calcination or sulfuric-acid-catalyzed hydrolysis gave mesoporous silica and ethylene-bridged organosilica films. The large, crack-free mesoporous films have layered structures with features that originate from the nematic organization of the nanocrystalline chitin.

14.
Nanoscale ; 5(20): 9455-82, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24056756

RESUMEN

Metal oxide nanomaterials have been intensively pursued for modern science and nanotechnology. Control over the size and shape of the oxide nanoparticles enables tunability of their unique properties sought for many useful applications. This review presents a comprehensive overview of the recent advances in the shape-controlled synthesis of colloidal oxide nanoparticles. We introduce the size- and shape-dependent properties of the oxide nanoparticles along with their potential applications and subsequent descriptions of the kinetic regime concepts of the formation of the monodisperse nanocolloids. Variations of the experimental conditions including capping molecules, precursor monomer concentration, and reaction temperature/aging have been explored to control the shape of the oxide nanoparticles in wet-chemistry syntheses. The different capping molecule-assisted synthetic methods of the hydro-solvothermal route, the two-phase route, heating-up thermolysis, and reverse micelle are presented as a collection of clear examples of the regular oxide nanoparticles. We also discuss the advantages and obstacles of the synthetic methods that have proven to be controllable and reproducible. The author concludes this review with valuable portraits on working hypotheses for the shape-controlled oxide nanoparticle synthesis.

15.
J Colloid Interface Sci ; 394: 100-7, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23375803

RESUMEN

Ceria nanoparticles were synthesized from reaction mixture of cerium nitrate/hexamethylenediamine/water-ethylene glycol. Lamellar, particle-aggregated array, platelet, rice, cube, quasi-sphere shapes of the ceria nanoparticles can be controlled by tuning reaction parameters (reagent concentration, reagent components, pH, and reaction conditions). Studies on shape-dependent catalysis of the bare ceria samples toward CO oxidation indicated that the cube-shaped ceria nanoparticles show better catalytic activity than the nanospheres and the commercial micropowders. As capped by hexamethylenediamine (HEA) molecules, amine-functionalized ceria nanoparticles act as platforms for depositing copper particles to produce efficient Cu/CeO(2) hybrid nanocatalysts for CO conversion. Coupling of the copper clusters with the HEA-capped ceria nanocubes was achieved with the Cu contents up to 15 wt.%. The Cu/CeO(2) nanohybrids show an enhanced catalytic efficiency of low temperature CO conversion. This could be due to high exposure of the reactive {100} facets in the ceria nanocubes and interfacial copper-ceria interactions.

16.
Colloids Surf B Biointerfaces ; 103: 326-44, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23247263

RESUMEN

Inorganic hybrid nanostructures containing two or more nanocomponents have been emerging in many areas of materials science in recent years. The particle-particle interactions in a hybrid particle system could significantly improve existing local electronic structure and induce tunable physiochemical responses. The current work reviews the diverse inorganic hybrid nanostructures formed by adhesion of the different single components via seed-mediated method. The hybrid nanomaterials have great potentials for real applications in many other fields. The nanohybrids have been used as efficient heterocatalysts for carbon monoxide conversion and photodegradation of organic contaminants. The enhanced catalytic activity of these hybrid nanocatalysts could be attributed the formation of oxygen vacancies and electron transfer across the structural junction in a hybrid system as a result of the interfacial particle-particle interactions. The synergistic combination of up-converting and semiconducting properties in an up-converting semiconducting hybrid particle results in appearance of sub-band-gap photoconductivity. This behavior has a great significance for the design of photovoltaic devices for effective solar energy conversion. The functionalization and subsequent bioconjugation of the hybrid nanostructures to afford the multifunctional nanomedical platforms for simultaneous diagnosis and therapy are reviewed. The conjugated multifunctional hybrid nanostructures exhibit high biocompatibility and highly selective binding with functional groups-fabricated alive organs through delivering them to the tumor sites. The clever combinations of multifunctional features and antibody conjugation within these vehicles make them to generally offer new opportunities for clinical diagnostics and therapeutics.


Asunto(s)
Coloides/química , Nanoestructuras/química , Nanotecnología/métodos , Tecnología Biomédica , Catálisis , Nanoestructuras/ultraestructura , Termodinámica
18.
Colloids Surf B Biointerfaces ; 88(1): 1-22, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21802262

RESUMEN

Aqueous-dispersed single and binary noble metal nanocrystals have attracted much attention as key materials in many fields, especially in biomedicine, catalysis, etc. Controlled growth of the metal nuclei allow for the manipulation of uniform morphology of final products. This behavior would tailor their unique physiochemical and electronic properties and follows by their practical applications. This review presents an overall picture of kinetic formation of a particle and then summarizes an overview of recent progress in many research groups concerning aqueous- and/or polyol-based syntheses of many types of aqueous-dispersed single metallic and bimetallic nanocrystals with controlled shape. The main advantages in these synthetic approaches for the shape-controlled metal nanocrystals are simple, versatile, environmentally friendly, low cost, pure and single-crystalline products, and high yield. The formed products can be easily dispersed in water medium and compatible for biotechnological field. Particularly the biomolecule (antibody including protein and/or DNA)-conjugated gold nanocrystals have been utilized as an active agent for a broad range of biomedical applications. We expect that this review will have a high potential towards novel materials fabrication and nanotechnological fields.


Asunto(s)
Medicina/métodos , Nanopartículas del Metal/química , Nanotecnología/métodos , Oro/química , Modelos Moleculares
19.
Chem Commun (Camb) ; 47(27): 7797-9, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21633747

RESUMEN

Silver orthophosphate nanocrystals with controlled particle size have been synthesized using a simple, reproducible and easily scaled up route based on the reaction between silver ions, oleylamine and phosphoric acid. The obtained nanocrystals are highly uniform in size and exhibit high visible light activity for the photodecomposition of organic compounds.

20.
ACS Appl Mater Interfaces ; 3(7): 2228-34, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21675750

RESUMEN

Formation of hybrid Ag-TiO(2) nanocrystals (NCs) in which Ag clusters are uniformly deposited on individual TiO(2) NC surface has been achieved by using hydrophobic surfactant-capped TiO(2) NCs in combination with a photodeposition technique. The population of Ag clusters on the individual TiO(2) NC surface can be controlled by the degree of hydrophobicity (e.g., the number of vacant sites) on the TiO(2) NC surface while their size may be altered simply by varying irradiation time. A reversible change in color of the resulting hybrid Ag-TiO(2) NCs is induced by alternating UV light and visible-light illumination; however, the size and population of Ag clusters on TiO(2) NCs are almost unchanged. Furthermore, these materials also exhibit much higher photocatalytic performance as compared to that of Ag supported on commercial TiO(2)-P25.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...