Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 795: 148872, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328919

RESUMEN

Radiological release incidents can potentially contaminate widespread areas with radioactive materials and decontamination efforts are typically focused on populated areas, which means radionuclides may be left in forested areas for long periods of time. Large wildfires in contaminated forested areas have the potential to reintroduce these radionuclides into the atmosphere and cause exposure to first responders and downwind communities. One important radionuclide contaminant released from radiological incidents is radiocesium (137Cs) due to high yields and its long half-life of 30.2 years. An Eulerian 3D photochemical transport model was used to estimate potential ambient impacts of 137Cs re-emission due to wildfire following hypothetical radiological release scenarios. The Community Multiscale Air Quality (CMAQ) model did well at predicting levels and periods of increased PM2.5 carbon due to wildfire smoke at routine surface monitors in California during the summer of 2016. The model also did well at capturing the extent of the surface mixing layer compared to aerosol lidar measurements. Emissions from a large hypothetical wildfire were introduced into the wildland-urban interface (WUI) impacted by a hypothetical radiological release event. While ambient concentrations tended to be highest near the fire, the highest population committed effective dose equivalent by inhalation to an adult from 137Cs over an hour was downwind where wind flows moved smoke to high population areas. Seasonal variations in meteorology (wind flows) can result in differential population impacts even in the same metropolitan area. Modeled post-incident ambient levels of 137Cs both near these wildfires and further downwind in nearby urban areas were well below levels that would necessitate population evacuation or warrant other protective action recommendations such as shelter-in-place. These results suggest that 1) the modeling system captures local to regional scale transport and levels of PM2.5 from wildfire and 2) first responders and downwind population would not be expected to be at elevated risk from the initial inhalathion exposure of 137Cs re-emission.


Asunto(s)
Contaminantes Atmosféricos , Incendios Forestales , Contaminantes Atmosféricos/análisis , Radioisótopos de Cesio , Monitoreo del Ambiente , Material Particulado/análisis , Humo/análisis
2.
Environ Sci Technol ; 49(13): 7843-50, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26030084

RESUMEN

Water is a ubiquitous and abundant component of atmospheric aerosols. It influences light scattering, the hydrological cycle, atmospheric chemistry, and secondary particulate matter (PM) formation. Despite the critical importance of aerosol liquid water, mass concentrations are not well-known. Using speciated ion and meteorological data from the Southeastern Aerosol Research and Characterization network, we employ the thermodynamic model ISORROPIAv2.1 to estimate water mass concentrations and evaluate trends from 2001 to 2012 in urban and rural locations. The purpose of this study is to better understand the historical trends of aerosol liquid water in the southeast U.S. in the context of improved air quality and recently noted reductions in particulate organic carbon (OC). Aerosol water mass concentrations decrease by ∼79% from 2001 to 2012 in the region. Decreases are more prominent in rural than in urban areas. Fractional contribution of water to PM also decreases during the same time period, and this is consistent with recently noted improvements in visibility. These findings agree with the hypotheses that aerosol liquid water facilitates formation of biogenic secondary organic aerosol (SOA) and that biogenically derived SOA is modulated in the presence of anthropogenic perturbations.


Asunto(s)
Aerosoles/química , Compuestos Orgánicos/química , Agua/química , Modelos Teóricos , Material Particulado/análisis , Análisis de Regresión , Sudeste de Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...