Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroradiology ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880824

RESUMEN

BACKGROUND AND PURPOSE: Quantitative T1 mapping can be an essential tool for assessing tissue injury in multiple sclerosis (MS). We introduce T1-REQUIRE, a method that converts a single high-resolution anatomical 3D T1-weighted Turbo Field Echo (3DT1TFE) scan into a parametric T1 map that could be used for quantitative assessment of tissue damage. We present the accuracy and feasibility of this method in MS. METHODS: 14 subjects with relapsing-remitting MS and 10 healthy subjects were examined. T1 maps were generated from 3DT1TFE images using T1-REQUIRE, which estimates T1 values using MR signal equations and internal tissue reference T1 values. Estimated T1 of lesions, white, and gray matter regions were compared with reference Inversion-Recovery Fast Field Echo T1 values and analyzed via correlation and Bland-Altman (BA) statistics. RESULTS: 159 T1-weighted (T1W) hypointense MS lesions and 288 gray matter regions were examined. T1 values for MS lesions showed a Pearson's correlation of r = 0.81 (p < 0.000), R2 = 0.65, and Bias = 4.18%. BA statistics showed a mean difference of -53.95 ms and limits of agreement (LOA) of -344.20 and 236.30 ms. Non-lesional normal-appearing white matter had a correlation coefficient of r = 0.82 (p < 0.000), R2 = 0.67, Bias = 8.78%, mean difference of 73.87 ms, and LOA of -55.67 and 203.41 ms. CONCLUSIONS: We demonstrate the feasibility of retroactively derived high-resolution T1 maps from routinely acquired anatomical images, which could be used to quantify tissue pathology in MS. The results of this study will set the stage for testing this method in larger clinical studies for examining MS disease activity and progression.

2.
J Neurosci ; 41(48): 9957-9970, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34667070

RESUMEN

Neural oscillations can couple networks of brain regions, especially at lower frequencies. The nasal respiratory rhythm, which elicits robust olfactory bulb oscillations, has been linked to episodic memory, locomotion, and exploration, along with widespread oscillatory coherence. The piriform cortex is implicated in propagating the olfactory-bulb-driven respiratory rhythm, but this has not been tested explicitly in the context of both hippocampal theta and nasal respiratory rhythm during exploratory behaviors. We investigated systemwide interactions during foraging behavior, which engages respiratory and theta rhythms. Local field potentials from the olfactory bulb, piriform cortex, dentate gyrus, and CA1 of hippocampus, primary visual cortex, and nasal respiration were recorded simultaneously from male rats. We compared interactions among these areas while rats foraged using either visual or olfactory spatial cues. We found high coherence during foraging compared with home cage activity in two frequency bands that matched slow and fast respiratory rates. Piriform cortex and hippocampus maintained strong coupling at theta frequency during periods of slow respiration, whereas other pairs showed coupling only at the fast respiratory frequency. Directional analysis shows that the modality of spatial cues was matched to larger influences in the network by the respective primary sensory area. Respiratory and theta rhythms also coupled to faster oscillations in primary sensory and hippocampal areas. These data provide the first evidence of widespread interactions among nasal respiration, olfactory bulb, piriform cortex, and hippocampus in awake freely moving rats, and support the piriform cortex as an integrator of respiratory and theta activity.SIGNIFICANCE STATEMENT Recent studies have shown widespread interactions between the nasally driven respiratory rhythm and neural oscillations in hippocampus and neocortex. With this study, we address how the respiratory rhythm interacts with ongoing slow brain rhythms across olfactory, hippocampal, and visual systems in freely moving rats. Patterns of network connectivity change with behavioral state, with stronger interactions at fast and slow respiratory frequencies during foraging as compared with home cage activity. Routing of interactions between sensory cortices depends on the modality of spatial cues present during foraging. Functional connectivity and cross-frequency coupling analyses suggest strong bidirectional interactions between olfactory and hippocampal systems related to respiration and point to the piriform cortex as a key area for mediating respiratory and theta rhythms.


Asunto(s)
Conducta Exploratoria/fisiología , Corteza Piriforme/fisiología , Fenómenos Fisiológicos Respiratorios , Conducta Espacial/fisiología , Ritmo Teta/fisiología , Animales , Señales (Psicología) , Masculino , Percepción Olfatoria/fisiología , Ratas , Ratas Long-Evans , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...