Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(7): e0253758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270576

RESUMEN

BACKGROUND: Governments across the globe responded with different strategies to the COVID-19 pandemic. While some countries adopted measures, which have been perceived controversial, others pursued a strategy aiming for herd immunity. The latter is even more controversial and has been called unethical by the WHO Director-General. Inevitably, without proper control measures, viral diversity increases and multiple infectious exposures become common, when the pandemic reaches its maximum. This harbors not only a potential threat overseen by simplified theoretical arguments in support of herd immunity, but also deserves attention when assessing response measures to increasing numbers of infection. METHODS AND FINDINGS: We extend the simulation model underlying the pandemic preparedness web interface CovidSim 1.1 (http://covidsim.eu/) to study the hypothetical effect of increased morbidity and mortality due to 'multi-infections', either acquired at by successive infective contacts during the course of one infection or by a single infective contact with a multi-infected individual. The simulations are adjusted to reflect roughly the situation in the USA. We assume a phase of general contact reduction ("lockdown") at the beginning of the epidemic and additional case-isolation measures. We study the hypothetical effects of varying enhancements in morbidity and mortality, different likelihoods of multi-infected individuals to spread multi-infections and different susceptibility to multi-infections in different disease phases. It is demonstrated that multi-infections lead to a slight reduction in the number of infections, as these are more likely to get isolated due to their higher morbidity. However, the latter substantially increases the number of deaths. Furthermore, simulations indicate that a potential second lockdown can substantially decrease the epidemic peak, the number of multi-infections and deaths. CONCLUSIONS: Enhanced morbidity and mortality due to multiple disease exposure is a potential threat in the COVID-19 pandemic that deserves more attention. Particularly it underlines another facet questioning disease management strategies aiming for herd immunity.


Asunto(s)
COVID-19/epidemiología , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Inmunidad Colectiva , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/transmisión , Humanos , Modelos Estadísticos , Mortalidad/tendencias
2.
PLoS One ; 16(4): e0249588, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33886605

RESUMEN

BACKGROUND: Different levels of control measures were introduced to contain the global COVID-19 pandemic, many of which have been controversial, particularly the comprehensive use of diagnostic tests. Regular testing of high-risk individuals (pre-existing conditions, older than 60 years of age) has been suggested by public health authorities. The WHO suggested the use of routine screening of residents, employees, and visitors of long-term care facilities (LTCF) to protect the resident risk group. Similar suggestions have been made by the WHO for other closed facilities including incarceration facilities (e.g., prisons or jails), wherein parts of the U.S., accelerated release of approved inmates is taken as a measure to mitigate COVID-19. METHODS AND FINDINGS: Here, the simulation model underlying the pandemic preparedness tool CovidSim 1.1 (http://covidsim.eu/) is extended to investigate the effect of regularly testing of employees to protect immobile resident risk groups in closed facilities. The reduction in the number of infections and deaths within the risk group is investigated. Our simulations are adjusted to reflect the situation of LTCFs in Germany, and incarceration facilities in the U.S. COVID-19 spreads in closed facilities due to contact with infected employees even under strict confinement of visitors in a pandemic scenario without targeted protective measures. Testing is only effective in conjunction with targeted contact reduction between the closed facility and the outside world-and will be most inefficient under strategies aiming for herd immunity. The frequency of testing, the quality of tests, and the waiting time for obtaining test results have noticeable effects. The exact reduction in the number of cases depends on disease prevalence in the population and the levels of contact reductions. Testing every 5 days with a good quality test and a processing time of 24 hours can lead up to a 40% reduction in the number of infections. However, the effects of testing vary substantially among types of closed facilities and can even be counterproductive in U.S. IFs. CONCLUSIONS: The introduction of COVID-19 in closed facilities is unavoidable without a thorough screening of persons that can introduce the disease into the facility. Regular testing of employees in closed facilities can contribute to reducing the number of infections there, but is only meaningful as an accompanying measure, whose economic benefit needs to be assessed carefully.


Asunto(s)
COVID-19/diagnóstico , COVID-19/prevención & control , Casas de Salud , Prisiones , Prueba de COVID-19 , Humanos , Cuidados a Largo Plazo , Tamizaje Masivo , SARS-CoV-2/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...