Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 11(17): e15759, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653539

RESUMEN

Hypoxia, a state of insufficient oxygen availability, promotes cellular lactate production. Lactate levels are increased in lungs from patients with idiopathic pulmonary fibrosis (IPF), a disease characterized by excessive scar formation, and lactate is implicated in the pathobiology of lung fibrosis. However, the mechanisms underlying the effects of hypoxia and lactate on fibroblast phenotype are poorly understood. We exposed normal and IPF lung fibroblasts to persistent hypoxia and found that increased lactate generation by IPF fibroblasts was driven by the FoxM1-dependent increase of lactate dehydrogenase A (LDHA) coupled with decreased LDHB that was not observed in normal lung fibroblasts. Importantly, hypoxia reduced α-smooth muscle actin (α-SMA) expression in normal fibroblasts but had no significant impact on this marker of differentiation in IPF fibroblasts. Treatment of control and IPF fibroblasts with TGF-ß under hypoxic conditions did not significantly change LDHA or LDHB expression. Surprisingly, lactate directly induced the differentiation of normal, but not IPF fibroblasts under hypoxic conditions. Moreover, while expression of GPR-81, a G-protein-coupled receptor that binds extracellular lactate, was increased by hypoxia in both normal and IPF fibroblasts, its inhibition or silencing only suppressed lactate-mediated differentiation in normal fibroblasts. These studies show that hypoxia differentially affects normal and fibrotic fibroblasts, promoting increased lactate generation by IPF fibroblasts through regulation of the LDHA/LDHB ratio and promoting normal lung fibroblast responsiveness to lactate through GPR-81. This supports a novel paradigm in which lactate may serve as a paracrine intercellular signal in oxygen-deficient microenvironments.


Asunto(s)
Fibrosis Pulmonar Idiopática , Isoenzimas , Humanos , Miofibroblastos , L-Lactato Deshidrogenasa , Fibroblastos , Ácido Láctico , Hipoxia , Oxígeno
3.
Virol J ; 20(1): 78, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095508

RESUMEN

Caspases and poly (ADP-ribose) polymerase 1 (PARP1) have been shown to promote influenza A virus (IAV) replication. However, the relative importance and molecular mechanisms of specific caspases and their downstream substrate PARP1 in regulating viral replication in airway epithelial cells (AECs) remains incompletely elucidated. Here, we targeted caspase 2, 3, 6, and PARP1 using specific inhibitors to compare their role in promoting IAV replication. Inhibition of each of these proteins caused significant decline in viral titer, although PARP1 inhibitor led to the most robust reduction of viral replication. We previously showed that the pro-apoptotic protein Bcl-2 interacting killer (Bik) promotes IAV replication in the AECs by activating caspase 3. In this study, we found that as compared with AECs from wild-type mice, bik-deficiency alone resulted in ~ 3 logs reduction in virus titer in the absence of treatment with the pan-caspase inhibitor (Q-VD-Oph). Inhibiting overall caspase activity using Q-VD-Oph caused additional decline in viral titer by ~ 1 log in bik-/- AECs. Similarly, mice treated with Q-VD-Oph were protected from IAV-induced lung inflammation and lethality. Inhibiting caspase activity diminished nucleo-cytoplasmic transport of viral nucleoprotein (NP) and cleavage of viral hemagglutinin and NP in human AECs. These findings suggest that caspases and PARP1 play major roles to independently promote IAV replication and that additional mechanism(s) independent of caspases and PARP1 may be involved in Bik-mediated IAV replication. Further, peptides or inhibitors that target and block multiple caspases or PARP1 may be effective treatment targets for influenza infection.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Ratones , Humanos , Virus de la Influenza A/fisiología , Caspasas/metabolismo , Células Epiteliales , Proteínas Reguladoras de la Apoptosis , Nucleoproteínas/metabolismo , Replicación Viral/fisiología , Proteínas Mitocondriales
4.
J Immunol ; 210(6): 832-841, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36688687

RESUMEN

Fibrosis is characterized by inappropriately persistent myofibroblast accumulation and excessive extracellular matrix deposition with the disruption of tissue architecture and organ dysfunction. Regulated death of reparative mesenchymal cells is critical for normal wound repair, but profibrotic signaling promotes myofibroblast resistance to apoptotic stimuli. A complex interplay between immune cells and structural cells underlies lung fibrogenesis. However, there is a paucity of knowledge on how these cell populations interact to orchestrate physiologic and pathologic repair of the injured lung. In this context, gasdermin-D (GsdmD) is a cytoplasmic protein that is activated following cleavage by inflammatory caspases and induces regulated cell death by forming pores in cell membranes. This study was undertaken to evaluate the impact of human (Thp-1) monocyte-derived extracellular vesicles and GsdmD on human lung fibroblast death. Our data show that active GsdmD delivered by monocyte-derived extracellular vesicles induces caspase-independent fibroblast and myofibroblast death. This cell death was partly mediated by GsdmD-independent induction of cellular inhibitor of apoptosis 2 (cIAP-2) in the recipient fibroblast population. Our findings, to our knowledge, define a novel paradigm by which inflammatory monocytes may orchestrate the death of mesenchymal cells in physiologic wound healing, illustrating the potential to leverage this mechanism to eliminate mesenchymal cells and facilitate the resolution of fibrotic repair.


Asunto(s)
Vesículas Extracelulares , Gasderminas , Humanos , Monocitos , Diferenciación Celular , Fibroblastos , Caspasas
5.
Am J Pathol ; 192(5): 750-761, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35183510

RESUMEN

Lung fibrosis is characterized by the continuous accumulation of extracellular matrix (ECM) proteins produced by apoptosis-resistant (myo)fibroblasts. Lung epithelial injury promotes the recruitment and activation of fibroblasts, which are necessary for tissue repair and restoration of homeostasis. However, under pathologic conditions, a vicious cycle generated by profibrotic growth factors/cytokines, multicellular interactions, and matrix-associated signaling propagates the wound repair response and promotes lung fibrosis characterized not only by increased quantities of ECM proteins but also by changes in the biomechanical properties of the matrix. Importantly, changes in the biochemical and biomechanical properties of the matrix itself can serve to perpetuate fibroblast activity and propagate fibrosis, even in the absence of the initial stimulus of injury. The development of novel experimental models and methods increasingly facilitates our ability to interrogate fibrotic processes at the cellular and molecular levels. The goal of this review is to discuss the impact of ECM conditions in the development of lung fibrosis and to introduce new approaches to more accurately model the in vivo fibrotic microenvironment. This article highlights the pathologic roles of ECM in terms of mechanical force and the cellular interactions while reviewing in vitro and ex vivo models of lung fibrosis. The improved understanding of the fundamental mechanisms that contribute to lung fibrosis holds promise for identification of new therapeutic targets and improved outcomes.


Asunto(s)
Fibrosis Pulmonar , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Pulmón/patología , Fibrosis Pulmonar/patología , Transducción de Señal
6.
Cell Death Dis ; 9(6): 584, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789556

RESUMEN

Radiation therapy is critical for the control of many tumors and lung is an important dose-limiting organ that impacts radiation dose prescribed to avoid irreversible pulmonary fibrosis in cancer survivors. Idiopathic pulmonary fibrosis (IPF) is a chronic, irreversible lung disease caused by aberrantly activated lung (myo)fibroblasts. The presence of pro-fibrotic, apoptosis-resistant fibroblasts in IPF promotes progressive fibrosis and may have a role in other diseases, if these resistant cells are selected for as a consequence of treatment. However, the pathological response of IPF fibroblasts to radiation compared to non-IPF lung fibroblasts is not known. To address this, we examined fibroblast viability following radiation in lung fibroblasts from IPF and non-IPF patients and the underlying mechanism that protects IPF fibroblasts from radiation-induced death. IPF fibroblasts are significantly more resistant to apoptosis compared to non-IPF lung fibroblasts, suggesting that resistance to radiation-induced cell death is a predominant mechanism leading to lung fibrosis. Analysis of γH2AX induction demonstrated that radiation-induced DNA damage is reduced in IPF fibroblasts and correlates to the activation of the transcription factor forkhead box M1 (FoxM1) and subsequent upregulation of DNA repair proteins RAD51 and BRCA2. FoxM1 activation occurs secondary to FoxO3a suppression in IPF fibroblasts while restoration of FoxO3a function sensitizes IPF fibroblasts to radiation-induced cell death and downregulates FoxM1, RAD51, and BRCA2. Our findings support that increased FoxO3a/FoxM1-dependent DNA repair may be integral to the preservation of death-resistant fibrotic fibroblasts after radiation and that selective targeting of radioresistant fibroblasts may mitigate fibrosis.


Asunto(s)
Proteína BRCA2/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Proteína Forkhead Box M1/metabolismo , Fibrosis Pulmonar Idiopática/patología , Recombinasa Rad51/metabolismo , Radiación Ionizante , Transducción de Señal , Bleomicina , Muerte Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Colágeno/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Fragmentación del ADN/efectos de los fármacos , Fragmentación del ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Proteína Forkhead Box O3/metabolismo , Histonas/metabolismo , Humanos , Mutágenos/toxicidad , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación
7.
Physiol Rep ; 4(21)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27905295

RESUMEN

Alternaria alternata is an allergenic fungus and known to cause an upper respiratory tract infection and asthma in humans with compromised immunity. Although A. alternata's effect on airway epithelial cells has previously been examined, the potential role of A. alternata on lung fibroblast viability is not understood. Since lung fibroblasts derived from patients with idiopathic pulmonary fibrosis (IPF) display a distinct phenotype that is resistant to stress and cell death inducing conditions, the investigation of the role of Alternaria on pathological IPF fibroblasts provides a better understanding of the fibrotic process induced by an allergenic fungus. Therefore, we examined cell viability of control and IPF fibroblasts (n = 8 each) in response to A. alternata extract. Control fibroblast cell death was increased while IPF fibroblasts were resistant when exposed to 50-100 µg/mL of A. alternata extract. However, there was no significant difference in kinetics or magnitude of Ca2+ responses from control lung and IPF fibroblasts. In contrast, unlike control fibroblasts, intracellular reactive oxygen species (ROS) levels remained low when IPF cells were treated with A. alternata extracts as a function of time. Caspase 3/7 and TUNEL assay revealed that enhanced cell death caused by A. alternata extract was likely due to necrosis, and 7-AAD assay and the use of sodium pyruvate for ATP generation further supported our findings that IPF fibroblasts become resistant to A. alternata extract-induced necrotic cell death. Our results suggest that exposure to A. alternata potentially worsens the fibrotic process by promoting normal lung fibroblast cell death in patients with IPF.


Asunto(s)
Alternaria/enzimología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Desensibilización Inmunológica , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Necrosis , Esfingosina/farmacología , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Supervivencia Celular/fisiología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esfingosina/administración & dosificación , Esfingosina/efectos adversos
8.
Int J Biochem Cell Biol ; 44(1): 158-69, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22041029

RESUMEN

Fibrosis of the lungs and other organs is characterized by the accumulation of myofibroblasts, effectors of wound-repair that are responsible for the deposition and organization of new extracellular matrix (ECM) in response to tissue injury. During the resolution phase of normal wound repair, myofibroblast apoptosis limits the continued deposition of ECM. Mounting evidence suggests that myofibroblasts from fibrotic wounds acquire resistance to apoptosis, but the mechanisms regulating this resistance have not been fully elucidated. Endothelin-1 (ET-1), a soluble peptide strongly associated with fibrogenesis, decreases myofibroblast susceptibility to apoptosis through activation of phosphatidylinositol 3'-OH kinase (PI3K)/AKT. Focal adhesion kinase (FAK) also promotes myofibroblast resistance to apoptosis through PI3K/AKT-dependent and -independent mechanisms, although the role of FAK in ET-1 mediated resistance to apoptosis has not been explored. The goal of this study was to investigate whether FAK contributes to ET-1 mediated myofibroblast resistance to apoptosis and to examine potential mechanisms downstream of FAK and PI3K/AKT by which ET-1 regulates myofibroblast survival. Here, we show that ET-1 regulates myofibroblast survival by Rho/ROCK-dependent activation of FAK. The anti-apoptotic actions of FAK are, in turn, dependent on activation of PI3K/AKT and the subsequent increased expression of Survivin, a member of the inhibitor of apoptosis protein (IAP) family. Collectively, these studies define a novel mechanism by which ET-1 promotes myofibroblast resistance to apoptosis through upregulation of Survivin.


Asunto(s)
Endotelina-1/farmacología , Proteínas Inhibidoras de la Apoptosis/biosíntesis , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/biosíntesis , Proteína-Tirosina Quinasas de Adhesión Focal/deficiencia , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/metabolismo , Pulmón/citología , Miofibroblastos/citología , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Survivin , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...