Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Adv Sci (Weinh) ; : e2400480, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881515

RESUMEN

Extracellular matrix (ECM) remodeling is strongly linked to Alzheimer's disease (AD) risk; however, the underlying mechanisms are not fully understood. Here, it is found that the injection of chondroitinase ABC (ChABC), mimicking ECM remodeling, into the medial prefrontal cortex (mPFC) reversed short-term memory loss and reduced amyloid-beta (Aß) deposition in 5xFAD mice. ECM remodeling also reactivated astrocytes, reduced the levels of aggrecan in Aß plaques, and enhanced astrocyte recruitment to surrounding plaques. Importantly, ECM remodeling enhanced the autophagy-lysosome pathway in astrocytes, thereby mediating Aß clearance and alleviating AD pathology. ECM remodeling also promoted Aß plaque phagocytosis by astrocytes by activating the astrocytic phagocytosis receptor MERTK and promoting astrocytic vesicle circulation. The study identified a cellular mechanism in which ECM remodeling activates the astrocytic autophagy-lysosomal pathway and alleviates AD pathology. Targeting ECM remodeling may represent a potential therapeutic strategy for AD and serve as a reference for the treatment of this disease.

2.
Food Sci Nutr ; 12(5): 3745-3758, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726426

RESUMEN

Neurotoxic microglia-provoked neuroinflammation is implicated in cognitive decline in Alzheimer's disease (AD). Supplementation with Ginkgo biloba, phosphatidylserine, Curcuma longa, and propolis is reported to improve the cognitive functions of elderly people; however, the underlying mechanisms of this combination of natural ingredients are unknown. We investigated the effects of a mixture of extracts from propolis, Coffea arabica, Gotu kola, phosphatidylserine, Ginkgo biloba, and Curcuma longa (mixture) on microglia polarization after exposure to amyloid ß1-42 (Aß1-42, 1 µM) and lipopolysaccharide from Porphyromonas gingivalis (PgLPS, 1 µg/mL), using MG6 and BV2 microglial cells. Exposure to Aß1-42 and PgLPS (AL) raised the mRNA expression of IL-1ß, TNF-α, and IL-6, nuclear translocation of p65 NF-κB in MG6 cells and BV2 cells, and mitochondrial reactive oxygen species (ROS) production in MG6 cells. The mixture dramatically suppressed the mRNA expression of IL-1ß, TNF-α, and IL-6, but significantly promoted that of IL-10, TGFß1, and BDNF in AL-exposed MG6 and BV2 cells. Furthermore, the mixture significantly suppressed the nuclear translocation of p65 NF-κB but significantly promoted that of NF-E2-related factor 2 (Nrf2) in AL-exposed MG6 and BV2 cells. Furthermore, the mixture significantly ameliorated mitochondrial ROS production but increased mitochondrial membrane potential in MG6 cells. These observations strongly suggest that the mixture demotes the neuropathic polarization of microglia by modulating NF-κB/Nrf2 activation and improving mitochondrial functions. This study supplies the potential mechanisms of the efficacy of a combination of natural ingredients that can be applied in the prevention of cognitive decline in AD and aging by targeting microglia-mediated neuroinflammation.

3.
iScience ; 27(3): 109281, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38455972

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease often associated with olfactory dysfunction. Aß is a typical AD hall marker, but Aß-induced molecular alterations in olfactory memory remain unclear. In this study, we used a 5xFAD mouse model to investigate Aß-induced olfactory changes. Results showed that 4-month-old 5xFAD have olfactory memory impairment accompanied by piriform cortex neuron activity decline and no sound or working memory impairment. In addition, synapse and glia functional alteration is consistent across different ages at the proteomic level. Microglia and astrocyte specific proteins showed strong interactions in the conserved co-expression network module. Moreover, this interaction declines only in mild cognitive impairment patients in human postmortem brain proteomic data. This suggests that astrocytes-microglia interaction may play a leading role in the early stage of Aß-induced olfactory memory impairment, and the decreasing of their synergy may accelerate the neurodegeneration.

4.
Cells ; 13(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38334675

RESUMEN

Cathepsin B (CatB) is thought to be essential for the induction of Porphyromonas gingivalis lipopolysaccharide (Pg LPS)-induced Alzheimer's disease-like pathologies in mice, including interleukin-1ß (IL-1ß) production and cognitive decline. However, little is known about the role of CatB in Pg virulence factor-induced IL-1ß production by microglia. We first subjected IL-1ß-luciferase reporter BV-2 microglia to inhibitors of Toll-like receptors (TLRs), IκB kinase, and the NLRP3 inflammasome following stimulation with Pg LPS and outer membrane vesicles (OMVs). To clarify the involvement of CatB, we used several known CatB inhibitors, including CA-074Me, ZRLR, and human ß-defensin 3 (hBD3). IL-1ß production in BV-2 microglia induced by Pg LPS and OMVs was significantly inhibited by the TLR2 inhibitor C29 and the IκB kinase inhibitor wedelolactonne, but not by the NLRPs inhibitor MCC950. Both hBD3 and CA-074Me significantly inhibited Pg LPS-induced IL-1ß production in BV-2 microglia. Although CA-074Me also suppressed OMV-induced IL-1ß production, hBD3 did not inhibit it. Furthermore, both hBD3 and CA-074Me significantly blocked Pg LPS-induced nuclear NF-κB p65 translocation and IκBα degradation. In contrast, hBD3 and CA-074Me did not block OMV-induced nuclear NF-κB p65 translocation or IκBα degradation. Furthermore, neither ZRLR, a specific CatB inhibitor, nor shRNA-mediated knockdown of CatB expression had any effect on Pg virulence factor-induced IL-1ß production. Interestingly, phagocytosis of OMVs by BV-2 microglia induced IL-1ß production. Finally, the structural models generated by AlphaFold indicated that hBD3 can bind to the substrate-binding pocket of CatB, and possibly CatL as well. These results suggest that Pg LPS induces CatB/CatL-dependent synthesis and processing of pro-IL-1ß without activation of the NLRP3 inflammasome. In contrast, OMVs promote the synthesis and processing of pro-IL-1ß through CatB/CatL-independent phagocytic mechanisms. Thus, hBD3 can improve the IL-1ß-associated vicious inflammatory cycle induced by microglia through inhibition of CatB/CatL.


Asunto(s)
Microglía , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , Catepsina B/metabolismo , Quinasa I-kappa B/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos , Microglía/metabolismo , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factores de Virulencia/metabolismo
5.
Glia ; 72(2): 227-244, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37650384

RESUMEN

Microglia are the resident phagocytes of the brain, where they primarily function in the clearance of dead cells and the removal of un- or misfolded proteins. The impaired activity of receptors or proteins involved in phagocytosis can result in enhanced inflammation and neurodegeneration. RNA-seq and genome-wide association studies have linked multiple phagocytosis-related genes to neurodegenerative diseases, while the knockout of such genes has been demonstrated to exert protective effects against neurodegeneration in animal models. The failure of microglial phagocytosis influences AD-linked pathologies, including amyloid ß accumulation, tau propagation, neuroinflammation, and infection. However, a precise understanding of microglia-mediated phagocytosis in Alzheimer's disease (AD) is still lacking. In this review, we summarize current knowledge of the molecular mechanisms involved in microglial phagocytosis in AD across a wide range of pre-clinical, post-mortem, ex vivo, and clinical studies and review the current limitations regarding the detection of microglia phagocytosis in AD. Finally, we discuss the rationale of targeting microglial phagocytosis as a therapeutic strategy for preventing AD or slowing its progression.


Asunto(s)
Enfermedad de Alzheimer , Animales , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Estudio de Asociación del Genoma Completo , Fagocitosis , Encéfalo/metabolismo
6.
J Neuroinflammation ; 20(1): 258, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946211

RESUMEN

BACKGROUND: Although peripheral nerves have an intrinsic self-repair capacity following damage, functional recovery is limited in patients. It is a well-established fact that macrophages accumulate at the site of injury. Numerous studies indicate that the phenotypic shift from M1 macrophage to M2 macrophage plays a crucial role in the process of axon regeneration. This polarity change is observed exclusively in peripheral macrophages but not in microglia and CNS macrophages. However, the molecular basis of axonal regeneration by M2 macrophage is not yet fully understood. Herein, we aimed to identify the M2 macrophage-derived axon regeneration factor. METHODS: We established a peripheral nerve injury model by transection of the inferior alveolar nerve (IANX) in Sprague-Dawley rats. Transcriptome analysis was performed on the injured nerve. Recovery from sensory deficits in the mandibular region and histological reconnection of IAN after IANX were assessed in rats with macrophage depletion by clodronate. We investigated the effects of adoptive transfer of M2 macrophages or M2-derived cathepsin S (CTSS) on the sensory deficit. CTSS initiating signaling was explored by western blot analysis in IANX rats and immunohistochemistry in co-culture of primary fibroblasts and Schwann cells (SCs). RESULTS: Transcriptome analysis revealed that CTSS, a macrophage-selective lysosomal protease, was upregulated in the IAN after its injury. Spontaneous but partial recovery from a sensory deficit in the mandibular region after IANX was abrogated by macrophage ablation at the injured site. In addition, a robust induction of c-Jun, a marker of the repair-supportive phenotype of SCs, after IANX was abolished by macrophage ablation. As in transcriptome analysis, CTSS was upregulated at the injured IAN than in the intact IAN. Endogenous recovery from hypoesthesia was facilitated by supplementation of CTSS but delayed by pharmacological inhibition or genetic silencing of CTSS at the injured site. Adoptive transfer of M2-polarized macrophages at this site facilitated sensory recovery dependent on CTSS in macrophages. Post-IANX, CTSS caused the cleavage of Ephrin-B2 in fibroblasts, which, in turn, bound EphB2 in SCs. CTSS-induced Ephrin-B2 cleavage was also observed in human sensory nerves. Inhibition of CTSS-induced Ephrin-B2 signaling suppressed c-Jun induction in SCs and sensory recovery. CONCLUSIONS: These results suggest that M2 macrophage-derived CTSS contributes to axon regeneration by activating SCs via Ephrin-B2 shedding from fibroblasts.


Asunto(s)
Axones , Traumatismos de los Nervios Periféricos , Animales , Humanos , Ratas , Axones/patología , Catepsinas/metabolismo , Catepsinas/farmacología , Efrina-B2/metabolismo , Efrina-B2/farmacología , Fibroblastos/metabolismo , Macrófagos/metabolismo , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Nervios Periféricos/patología , Ratas Sprague-Dawley , Células de Schwann/metabolismo
7.
Mol Neurobiol ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38017342

RESUMEN

In recent years, Clusterin, a glycosylated protein with multiple biological functions, has attracted extensive research attention. It is closely associated with the physiological and pathological states within the organism. Particularly in Alzheimer's disease (AD) research, Clusterin plays a significant role in the disease's occurrence and progression. Numerous studies have demonstrated a close association between Clusterin and AD. Firstly, the expression level of Clusterin in the brain tissue of AD patients is closely related to pathological progression. Secondly, Clusterin is involved in the deposition and formation of ß-amyloid, which is a crucial process in AD development. Furthermore, Clusterin may affect the pathogenesis of AD through mechanisms such as regulating inflammation, controlling cell apoptosis, and clearing pathological proteins. Therefore, further research on the relationship between Clusterin and AD will contribute to a deeper understanding of the etiology of this neurodegenerative disease and provide a theoretical basis for developing early diagnostic and therapeutic strategies for AD. This also makes Clusterin one of the research focuses as a potential biomarker for AD diagnosis and treatment monitoring.

8.
Curr Biol ; 33(20): 4330-4342.e5, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37734375

RESUMEN

Many species living in groups can perform prosocial behaviors via voluntarily helping others with or without benefits for themselves. To provide a better understanding of the neural basis of such prosocial behaviors, we adapted a preference lever-switching task in which mice can prevent harm to others by switching from using a lever that causes shocks to a conspecific one that does not. We found the harm avoidance behavior was mediated by self-experience and visual and social contact but not by gender or familiarity. By combining single-unit recordings and analysis of neural trajectory decoding, we demonstrated the dynamics of anterior cingulate cortex (ACC) neural activity changes synchronously with the harm avoidance performance of mice. In addition, ACC neurons projected to the mediodorsal thalamus (MDL) to modulate the harm avoidance behavior. Optogenetic activation of the ACC-MDL circuit during non-preferred lever pressing (nPLP) and inhibition of this circuit during preferred lever pressing (PLP) both resulted in the loss of harm avoidance ability. This study revealed the ACC-MDL circuit modulates prosocial behavior to avoid harm to conspecifics and may shed light on the treatment of neuropsychiatric disorders with dysfunction of prosocial behavior.


Asunto(s)
Giro del Cíngulo , Conducta de Ayuda , Ratones , Animales , Giro del Cíngulo/fisiología , Tálamo/fisiología , Neuronas/fisiología
9.
Front Neurosci ; 17: 1171612, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662112

RESUMEN

Learning is a complex process, during which our opinions and decisions are easily changed due to unexpected information. But the neural mechanism underlying revision and correction during the learning process remains unclear. For decades, prediction error has been regarded as the core of changes to perception in learning, even driving the learning progress. In this article, we reviewed the concept of reward prediction error, and the encoding mechanism of dopaminergic neurons and the related neural circuities. We also discussed the relationship between reward prediction error and learning-related behaviors, including reversal learning. We then demonstrated the evidence of reward prediction error signals in several neurological diseases, including Parkinson's disease and addiction. These observations may help to better understand the regulatory mechanism of reward prediction error in learning-related behaviors.

10.
J Thorac Dis ; 15(7): 4027-4032, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37559653

RESUMEN

Background: Impaling injuries to the chest are relatively rare and often lethal. Initial evaluation, resuscitation, and surgical planning can be challenging for emergency physicians and surgeons. Chest trauma can be classified as either closed or penetrating, depending on whether or not the pleural cavity is open. Penetrating objects entering chest cavity frequently make an entrance and exit and are often accompanied by visceral/vascular damage. Open thoracotomy or video-assisted thoracic surgery (VATS) are considered the first-line approaches for severe penetrating chest trauma. Case Description: A 63-year-old male patient sustained a penetrating chest trauma caused by a T-shaped metallic bar falling from a height of 16 meters above the ground. After laboratory and imaging tests, as well as pre-operative preparation, the object was pulled out from the entry site after disinfection with surgical standby. Closed chest tube drainage was promptly performed, with chest tubes inserted through the entry and exit sites. The patient was discharged on postoperative day 14 in a good condition. Regular telephone follow-ups over 3 years showed that the patient recovered well after discharge. Conclusions: For penetrating non-cardiac chest trauma patients in stable condition, it is necessary to complete an exhaustive imaging evaluation to determine the specific position of the foreign body and identify any injuries to major vessels and organs. If the condition permits, direct removal of foreign bodies is allowed, ideally under VATS control. Surgeons should evaluate the best option for each case based on the available resources.

11.
Biomed Pharmacother ; 165: 115257, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37541176

RESUMEN

Zinc finger protein 335 (ZNF335) plays a crucial role in the methylation and, consequently, regulates the expression of a specific set of genes. Variants of the ZNF335 gene have been identified as risk factors for microcephaly in a variety of populations worldwide. Meanwhile, ZNF335 has also been identified as an essential regulator of T-cell development. However, an in-depth understanding of the role of ZNF335 in brain development and T cell maturation is still lacking. In this review, we summarize current knowledge of the molecular mechanisms underlying the involvement of ZNF335 in neuronal and T cell development across a wide range of pre-clinical, post-mortem, ex vivo, in vivo, and clinical studies. We also review the current limitations regarding the study of the pathophysiological functions of ZNF335. Finally, we hypothesize a potential role for ZNF335 in brain disorders and discuss the rationale of targeting ZNF335 as a therapeutic strategy for preventing brain disorders.


Asunto(s)
Encefalopatías , Microcefalia , Humanos , Microcefalia/genética , Encéfalo , Dedos de Zinc , Sistema Inmunológico
12.
Glia ; 71(12): 2720-2734, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37522284

RESUMEN

Zinc finger protein 335 (Zfp335) is a transcription factor that regulates mammalian neurogenesis and neuronal differentiation. It is a causative factor for severe microcephaly, small somatic size, and neonatal death. Here, we evaluated the effects of Zfp335 in the adult mouse brain after lipopolysaccharide (LPS) challenge. We used wild-type (WT) and Zfp335 knock-down (Zfp335+/- ) mice with LPS administered in the intracerebral ventricle in vivo and cultured microglia treated with LPS in vitro. The impact of Zfp335 was evaluated by RT-PCR, RNA-sequencing, western blotting, immunocytochemistry, ELISA, and the memory behavior tests. Knockdown of Zfp335 expression ameliorated microglia activation significantly, including reduced mRNA and protein expression of Iba1, reduced numbers of microglia, reduced cell diameter, and increased branch length, in the brains of 2-month-old mice after LPS treatment. Zfp335 was expressed in microglia and neurons, but increased in microglia, not neurons, in the brain of mice after LPS administration. LPS-induced microglia-mediated neurodegeneration was dependent upon microglial Zfp335 controlled by nuclear factor-kappa B. Microglial Zfp335 affected neuronal activity through transcriptional regulation of lymphocyte antigen-6M (Ly6M). Our data suggest that Zfp335 is a key transcription factor that exacerbates microglia-mediated neurodegeneration through upregulation of Ly6M expression. Inhibition of microglial Zfp335 may be a new strategy for preventing brain disease induced by microglia activation.

13.
Br J Pharmacol ; 180(19): 2455-2481, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37403614

RESUMEN

Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. The COVID-19 pandemic began in March 2020 and has wrought havoc on health and economic systems worldwide. Efficacious treatment for COVID-19 is lacking: Only preventive measures as well as symptomatic and supportive care are available. Preclinical and clinical studies have indicated that lysosomal cathepsins might contribute to the pathogenesis and disease outcome of COVID-19. Here, we discuss cutting-edge evidence on the pathological roles of cathepsins in SARS-CoV-2 infection, host immune dysregulations, and the possible underlying mechanisms. Cathepsins are attractive drug targets because of their defined substrate-binding pockets, which can be exploited as binding sites for pharmaceutical enzyme inhibitors. Accordingly, the potential modulatory strategies of cathepsin activity are discussed. These insights could shed light on the development of cathepsin-based interventions for COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Catepsinas/metabolismo , Factores de Virulencia , Pandemias , Antivirales/farmacología , Antivirales/uso terapéutico
14.
J Mol Model ; 29(7): 209, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314512

RESUMEN

CONTEXT: Alzheimer's disease (AD) is a chronic progressive neurodegenerative syndrome, which adversely disturbs cognitive abilities as well as intellectual processes and frequently occurs in the elderly. Inhibition of cholinesterase is a valuable approach to upsurge acetylcholine concentrations in the brain and persuades the development of multi-targeted ligands against cholinesterases. METHODS: The current study aims to determine the binding potential accompanied by antioxidant and anti-inflammatory activities of stilbenes-designed analogs against both cholinesterases (Acetylcholinesterase and butyrylcholinesterase) and neurotrophin targets for effective AD therapeutics. Docking results have shown that the WS6 compound exhibited the least binding energy - 10.1 kcal/mol with Acetylcholinesterase and - 7.8 kcal/mol with butyrylcholinesterase. The WS6 also showed a better binding potential with neurotrophin targets that are Brain-derived Neurotrophic Factor, Neurotrophin 4, Nerve Growth Factor, and Neurotrophin 3. The tested compounds particularly WS6 revealed significant antioxidant and anti-inflammatory activities through the comparative docking analysis with Fluorouracil and Melatonin as control drugs of antioxidants while Celecoxib and Anakinra as anti-inflammatory. The bioinformatics approaches including molecular docking calculations followed by the pharmacokinetics analysis and molecular dynamic simulations were accomplished to explore the capabilities of designed stilbenes as effective and potential leads. Root mean square deviation, root mean square fluctuations, and MM-GBSA calculations were performed through molecular dynamic simulations to extract the structural and residual variations and binding free energies through the 50-ns time scale.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Humanos , Anciano , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular
15.
Mol Neurobiol ; 60(10): 5944-5953, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37369821

RESUMEN

Rab proteins are important components of small GTPases and play crucial roles in regulating intracellular transportation and cargo delivery. Maintaining the proper functions of Rab proteins is essential for normal cellular activities such as cell signaling, division, and survival. Due to their vital and irreplaceable role in regulating intracellular vesicle transportation, accumulated researches have shown that the abnormalities of Rab proteins and their effectors are closely related to human diseases. Here, this review focused on Rab21, a member of the Rab family, and introduced the structures and functions of Rab21, as well as the regulatory mechanisms of Rab21 in human diseases, including neurodegenerative diseases, cancer, and inflammation. In summary, we described in detail the role of Rab21 in human diseases and provide insights into the potential of Rab21 as a therapeutic target for diseases.


Asunto(s)
Inflamación , Proteínas de Unión al GTP rab , Humanos , Inflamación/metabolismo , Proteínas de Unión al GTP rab/metabolismo
16.
Biochem Pharmacol ; 212: 115585, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37148981

RESUMEN

Cathepsin H (CatH) is a lysosomal cysteine protease with a unique aminopeptidase activity that is extensively expressed in the lung, pancreas, thymus, kidney, liver, skin, and brain. Owing to its specific enzymatic activity, CatH has critical effects on the regulation of biological behaviours of cancer cells and pathological processes in brain diseases. Moreover, a neutral pH level is optimal for CatH activity, so it is expected to be active in the extra-lysosomal and extracellular space. In the present review, we describe the expression, maturation, and enzymatic properties of CatH, and summarize the available experimental evidence that mechanistically links CatH to various physiological and pathological processes. Finally, we discuss the challenges and potentials of CatH inhibitors in CatH-induced disease therapy.


Asunto(s)
Catepsina D , Pulmón , Catepsina D/química , Catepsina D/metabolismo , Catepsina H , Pulmón/metabolismo , Humanos
17.
Cell Death Dis ; 14(4): 255, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031185

RESUMEN

Cathepsin B (CatB), a cysteine protease, is primarily localized within subcellular endosomal and lysosomal compartments. It is involved in the turnover of intracellular and extracellular proteins. Interest is growing in CatB due to its diverse roles in physiological and pathological processes. In functional defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by CatB, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagic cell death. However, CatB-mediated PCD is responsible for disease progression under pathological conditions. In this review, we provide an overview of the critical roles and regulatory pathways of CatB in different types of PCD, and discuss the possibility of CatB as an attractive target in multiple diseases. We also summarize current gaps in the understanding of the involvement of CatB in PCD to highlight future avenues for research.


Asunto(s)
Apoptosis , Catepsina B , Catepsina B/metabolismo , Apoptosis/fisiología , Piroptosis , Lisosomas/metabolismo
18.
Brain Behav Immun Health ; 30: 100622, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37101903

RESUMEN

The dysfunction of descending noradrenergic (NAergic) modulation in second-order neurons has long been observed in neuropathic pain. In clinical practice, antidepressants that increase noradrenaline levels in the synaptic cleft are used as first-line agents, although adequate analgesia has not been occasionally achieved. One of the hallmarks of neuropathic pain in the orofacial regions is microglial abnormalities in the trigeminal spinal subnucleus caudalis (Vc). However, until now, the direct interaction between descending NAergic system and Vc microglia in orofacial neuropathic pain has not been explored. We found that reactive microglia ingested the dopamine-ß-hydroxylase (DßH)-positive fraction, NAergic fibers, in the Vc after infraorbital nerve injury (IONI). Major histocompatibility complex class I (MHC-I) was upregulated in Vc microglia after IONI. Interferon-γ (IFNγ) was de novo induced in trigeminal ganglion (TG) neurons following IONI, especially in C-fiber neurons, which conveyed to the central terminal of TG neurons. Gene silencing of IFNγ in the TG reduced MHC-I expression in the Vc after IONI. Intracisternal administration of exosomes from IFNγ-stimulated microglia elicited mechanical allodynia and a decrease in DßH in the Vc, which did not occur when exosomal MHC-I was knocked down. Similarly, in vivo MHC-I knockdown in Vc microglia attenuated the development of mechanical allodynia and a decrease in DßH in the Vc after IONI. These results show that microglia-derived MHC-I causes a decrease in NAergic fibers, culminating in orofacial neuropathic pain.

19.
Transl Psychiatry ; 13(1): 79, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878900

RESUMEN

Animals need discriminating auditory fear memory (DAFM) to survive, but the related neural circuits of DAFM remain largely unknown. Our study shows that DAFM depends on acetylcholine (ACh) signal in the auditory cortex (ACx), which is projected from the nucleus basalis (NB). At the encoding stage, optogenetic inhibition of cholinergic projections of NB-ACx obfuscates distinct tone-responsive neurons of ACx recognizing from fear-paired tone to fear-unpaired tone signals, while simultaneously regulating the neuronal activity and reactivation of basal lateral amygdala (BLA) engram cells at the retrieval stage. This NBACh-ACx-BLA neural circuit for the modulation of DAFM is especially dependent on the nicotinic ACh receptor (nAChR). A nAChR antagonist reduces DAFM and diminishes the increased magnitude of ACx tone-responsive neuronal activity during the encoding stage. Our data suggest a critical role of NBACh-ACx-BLA neural circuit in DAFM: manipulation of the NB cholinergic projection to the ACx via nAChR during the encoding stage affects the activation of ACx tone-responsive neuron clusters and the BLA engram cells during the retrieval stage, thus modulating the DAFM.


Asunto(s)
Corteza Auditiva , Receptores Nicotínicos , Animales , Neuronas Colinérgicas , Acetilcolina , Miedo , Niacinamida , Colinérgicos/farmacología
20.
Yi Chuan ; 45(3): 212-220, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36927647

RESUMEN

Cathepsin B (CatB), a cysteine protease derived from lysosomes, was initially thought to non-selectively degrade proteins from phagocytosis and autophagy in lysosomes. However, CatB has been demonstrated to selectively degrade and specifically activate target proteins, thereby regulating the process of physiological and pathological responses. The expression, enzymatic activity, and cellular localization of CatB are significantly altered in brain aging and age-related neurodegenerative diseases. Therefore, the pathological function of CatB has attracted much attention in neuroscience research. In this review, we systematically summarize the molecular functions of CatB in brain aging and Alzheimer's disease and discuss the current problems in neuropathological studies of CatB, which lay a foundation for a comprehensive understanding of the pathogenesis of aging and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Catepsina B , Humanos , Catepsina B/genética , Catepsina B/metabolismo , Enfermedad de Alzheimer/etiología , Encéfalo/metabolismo , Envejecimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA