Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(10): e0275435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36201486

RESUMEN

Individual cow identification is a prerequisite for intelligent dairy farming management, and is important for achieving accurate and informative dairy farming. Computer vision-based approaches are widely considered because of their non-contact and practical advantages. In this study, a method based on the combination of Ghost and attention mechanism is proposed to improve ReNet50 to achieve non-contact individual recognition of cows. In the model, coarse-grained features of cows are extracted using a large sensory field of cavity convolution, while reducing the number of model parameters to some extent. ResNet50 consists of two Bottlenecks with different structures, and a plug-and-play Ghost module is inserted between the two Bottlenecks to reduce the number of parameters and computation of the model using common linear operations without reducing the feature map. In addition, the convolutional block attention module (CBAM) is introduced after each stage of the model to help the model to give different weights to each part of the input and extract the more critical and important information. In our experiments, a total of 13 cows' side view images were collected to train the model, and the final recognition accuracy of the model was 98.58%, which was 4.8 percentage points better than the recognition accuracy of the original ResNet50, the number of model parameters was reduced by 24.85 times, and the model size was only 3.61 MB. In addition, to verify the validity of the model, it is compared with other networks and the results show that our model has good robustness. This research overcomes the shortcomings of traditional recognition methods that require human extraction of features, and provides theoretical references for further animal recognition.


Asunto(s)
Inteligencia Artificial , Industria Lechera , Animales , Bovinos , Femenino , Humanos
2.
Front Plant Sci ; 13: 1041510, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714726

RESUMEN

Introduction: The purpose of this paper is to effectively and accurately identify weed species in crop fields in complex environments. There are many kinds of weeds in the detection area, which are densely distributed. Methods: The paper proposes the use of local variance pre-processing method for background segmentation and data enhancement, which effectively removes the complex background and redundant information from the data, and prevents the experiment from overfitting, which can improve the accuracy rate significantly. Then, based on the optimization improvement of DenseNet network, Efficient Channel Attention (ECA) mechanism is introduced after the convolutional layer to increase the weight of important features, strengthen the weed features and suppress the background features. Results: Using the processed images to train the model, the accuracy rate reaches 97.98%, which is a great improvement, and the comprehensive performance is higher than that of DenseNet, VGGNet-16, VGGNet-19, ResNet-50, DANet, DNANet, and U-Net models. Discussion: The experimental data show that the model and method we designed are well suited to solve the problem of accurate identification of crop and weed species in complex environments, laying a solid technical foundation for the development of intelligent weeding robots.

3.
Micromachines (Basel) ; 9(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30424463

RESUMEN

In this study, tunable diode laser absorption spectroscopy (TDLAS) combined with wavelength modulation spectroscopy (WMS) was used to develop a trace C2H2 sensor based on the principle of gas absorption spectroscopy. The core of this sensor is an interband cascade laser that releases wavelength locks to the best absorption line of C2H2 at 3305 cm-1 (3026 nm) using a driving current and a working temperature control. As the detected result was influenced by 1/f noise caused by the laser or external environmental factors, the TDLAS-WMS technology was used to suppress the 1/f noise effectively, to obtain a better minimum detection limit (MDL) performance. The experimental results using C2H2 gas with five different concentrations show a good linear relationship between the peak value of the second harmonic signal and the gas concentration, with a linearity of 0.9987 and detection accuracy of 0.4%. In total, 1 ppmv of C2H2 gas sample was used for a 2 h observation experiment. The data show that the MDL is low as 1 ppbv at an integration time of 63 s. In addition, the sensor can be realized by changing the wavelength of the laser to detect a variety of gases, which shows the flexibility and practicability of the proposed sensor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA