Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1282314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941722

RESUMEN

Aspergillus niger is the main industrial workhorse for global citric acid production. This fungus has complex sensing and signaling pathways to respond to environmental nutrient fluctuations. As the preferred primary carbon source, glucose also acts as a critical signal to trigger intracellular bioprocesses. Currently, however, there is still a knowledge gap in systems-level understanding of metabolic and cellular responses to this vital carbon source. In this study, we determined genome-wide transcriptional changes of citric acid-producing Aspergillus niger in response to external glucose gradient. It demonstrated that external glucose fluctuation led to transcriptional reprogramming of many genes encoding proteins involved in fundamental cellular process, including ribosomal biogenesis, carbon transport and catabolism, glucose sensing and signaling. The major glucose catabolism repressor creA maintained a stable expression independent of external glucose, while creB and creD showed significant downregulation and upregulation by the glucose increase. Notably, several high-affinity glucose transporters encoding genes, including mstA, were greatly upregulated when glucose was depleted, while the expression of low-affinity glucose transporter mstC was glucose-independent, which showed clear concordance with their protein levels detected by in situ fluorescence labeling assay. In addition, we also observed that the citric acid exporter cexA was observed to be transcriptionally regulated by glucose availability, which was correlated with extracellular citric acid secretion. These discoveries not only deepen our understanding of the transcriptional regulation of glucose but also shed new light on the adaptive evolutionary mechanism of citric acid production of A. niger.

2.
Nat Commun ; 14(1): 6680, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865661

RESUMEN

Biosensors are powerful tools for detecting, real-time imaging, and quantifying molecules, but rapidly constructing diverse genetically encoded biosensors remains challenging. Here, we report a method to rapidly convert enzymes into genetically encoded circularly permuted fluorescent protein-based indicators to detect organic acids (GECFINDER). ANL superfamily enzymes undergo hinge-mediated ligand-coupling domain movement during catalysis. We introduce a circularly permuted fluorescent protein into enzymes hinges, converting ligand-induced conformational changes into significant fluorescence signal changes. We obtain 11 GECFINDERs for detecting phenylalanine, glutamic acid and other acids. GECFINDER-Phe3 and GECFINDER-Glu can efficiently and accurately quantify target molecules in biological samples in vitro. This method simplifies amino acid quantification without requiring complex equipment, potentially serving as point-of-care testing tools for clinical applications in low-resource environments. We also develop a GECFINDER-enabled droplet-based microfluidic high-throughput screening method for obtaining high-yield industrial strains. Our method provides a foundation for using enzymes as untapped blueprint resources for biosensor design, creation, and application.


Asunto(s)
Aminoácidos , Técnicas Biosensibles , Ligandos , Proteínas/química , Fenilalanina , Técnicas Biosensibles/métodos
3.
Nucleic Acids Res ; 51(16): 8623-8642, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37449409

RESUMEN

Corynebacterium glutamicum is an important industrial workhorse for production of amino acids and chemicals. Although recently developed genome editing technologies have advanced the rational genetic engineering of C. glutamicum, continuous genome evolution based on genetic mutators is still unavailable. To address this issue, the DNA replication and repair machinery of C. glutamicum was targeted in this study. DnaQ, the homolog of ϵ subunit of DNA polymerase III responsible for proofreading in Escherichia coli, was proven irrelevant to DNA replication fidelity in C. glutamicum. However, the histidinol phosphatase (PHP) domain of DnaE1, the α subunit of DNA polymerase III, was characterized as the key proofreading element and certain variants with PHP mutations allowed elevated spontaneous mutagenesis. Repression of the NucS-mediated post-replicative mismatch repair pathway or overexpression of newly screened NucS variants also impaired the DNA replication fidelity. Simultaneous interference with the DNA replication and repair machinery generated a binary genetic mutator capable of increasing the mutation rate by up to 2352-fold. The mutators facilitated rapid evolutionary engineering of C. glutamicum to acquire stress tolerance and protein overproduction phenotypes. This study provides efficient tools for evolutionary engineering of C. glutamicum and could inspire the development of mutagenesis strategy for other microbial hosts.


Asunto(s)
Corynebacterium glutamicum , ADN Polimerasa III , ADN Polimerasa III/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Replicación del ADN/genética , Mutación , Tasa de Mutación , Ingeniería Metabólica
4.
Biotechnol Biofuels Bioprod ; 16(1): 80, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170167

RESUMEN

BACKGROUND: Plant hemoglobin shows great potential as a food additive to circumvent the controversy of using animal materials. Microbial fermentation with engineered microorganisms is considered as a promising strategy for sustainable production of hemoglobin. As an endotoxin-free and GRAS (generally regarded as safe) bacterium, Corynebacterium glutamicum is an attractive host for hemoglobin biosynthesis. RESULTS: Herein, C. glutamicum was engineered to efficiently produce plant hemoglobin. Hemoglobin genes from different sources including soybean and maize were selected and subjected to codon optimization. Interestingly, some candidates optimized for the codon usage bias of Escherichia coli outperformed those for C. glutamicum regarding the heterologous expression in C. glutamicum. Then, saturated synonymous mutation of the N-terminal coding sequences of hemoglobin genes and fluorescence-based high-throughput screening produced variants with 1.66- to 3.45-fold increase in hemoglobin expression level. To avoid the use of toxic inducers, such as isopropyl-ß-D-thiogalactopyranoside, two native inducible expression systems based on food additives propionate and gluconate were developed. Promoter engineering improved the hemoglobin expression level by 2.2- to 12.2-fold. Combination of these strategies and plasmid copy number modification allowed intracellular production of hemoglobin up to approximately 20% of total protein. Transcriptome and proteome analyses of the hemoglobin-producing strain revealed the cellular response to excess hemoglobin accumulation. Several genes were identified as potential targets for further enhancing hemoglobin production. CONCLUSIONS: In this study, production of plant hemoglobin in C. glutamicum was systematically engineered by combining codon optimization, promoter engineering, plasmid copy number modification, and multi-omics-guided novel target discovery. This study offers useful design principles to genetically engineer C. glutamicum for the production of hemoglobin and other recombinant proteins.

5.
Biosens Bioelectron ; 222: 115004, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516630

RESUMEN

Whole-cell biosensors based on transcriptional regulators are powerful tools for rapid measurement, high-throughput screening, dynamic metabolic regulation, etc. To optimize the biosensing performance of transcriptional regulator, its effector-binding domain is commonly engineered. However, this strategy is encumbered by the limitation of diversifying such a large domain and the risk of affecting effector specificity. Molecular dynamics simulation of effector binding of LysG (an LysR-type transcriptional regulator, LTTR) suggests the crucial role of the short linker helix (LH) connecting effector- and DNA-binding domains in protein conformational change. Directed evolution of LH efficiently produced LysG variants with extended operational range and unaltered effector specificity. The whole-cell biosensor based on the best LysGE58V variant outperformed the wild-type LysG in enzyme high-throughput screening and dynamic regulation of l-lysine biosynthetic pathway. LH mutations are suggested to affect DNA binding and facilitate transcriptional activation upon effector binding. LH engineering was also successfully applied to optimize another LTTR BenM for biosensing. Since LTTRs represent the largest family of prokaryotic transcriptional regulators with highly conserved structures, LH engineering is an efficient and universal strategy for development and optimization of whole-cell biosensors.


Asunto(s)
Técnicas Biosensibles , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/química , Proteínas Bacterianas/genética , Dominios Proteicos , ADN/genética
6.
Front Bioeng Biotechnol ; 11: 1336215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38234301

RESUMEN

Allosteric regulation by pathway products plays a vital role in amino acid metabolism. Homoserine dehydrogenase (HSD), the key enzyme for the biosynthesis of various aspartate family amino acids, is subject to feedback inhibition by l-threonine and l-isoleucine. The desensitized mutants with the potential for amino acid production remain limited. Herein, a semi-rational approach was proposed to relieve the feedback inhibition. HSD from Corynebacterium glutamicum (CgHSD) was first characterized as a homotetramer, and nine conservative sites at the tetramer interface were selected for saturation mutagenesis by structural simulations and sequence analysis. Then, we established a high-throughput screening (HTS) method based on resistance to l-threonine analog and successfully acquired two dominant mutants (I397V and A384D). Compared with the best-ever reported desensitized mutant G378E, both new mutants qualified the engineered strains with higher production of CgHSD-dependent amino acids. The mutant and wild-type enzymes were purified and assessed in the presence or absence of inhibitors. Both purified mutants maintained >90% activity with 10 mM l-threonine or 25 mM l-isoleucine. Moreover, they showed >50% higher specific activities than G378E without inhibitors. This work provides two competitive alternatives for constructing cell factories of CgHSD-related amino acids and derivatives. Moreover, the proposed approach can be applied to engineering other allosteric enzymes in the amino acid synthesis pathway.

7.
ACS Synth Biol ; 11(10): 3368-3378, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36099191

RESUMEN

Expanding the base conversion type is expected to largely broaden the application of base editing, whereas it requires decipherment of the machinery controlling the editing outcome. Here, we discovered that the DNA polymerase V-mediated translesion DNA synthesis (TLS) pathway controlled the C-to-A editing by a glycosylase base editor (GBE) in Escherichia coli. However, C-to-G conversion was surprisingly found to be the main product of the GBE in Corynebacterium glutamicum and subsequent gene inactivation identified the decisive TLS enzymes. Introduction of the E. coli TLS pathway into a TLS-deficient C. glutamicum mutant completely changed the GBE outcome from C-to-G to C-to-A. Combining the canonical C-to-T editor, a pioneering C-to-N base editing toolbox was established in C. glutamicum. The expanded base conversion capability produces greater genetic diversity and promotes the application of base editing in gene inactivation and protein evolution. This study demonstrates the possibility of engineering TLS systems to develop advanced genome editing tools.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , ADN Polimerasa Dirigida por ADN/genética , ADN/metabolismo
8.
Sci Adv ; 8(35): eabq2157, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044571

RESUMEN

Genome-scale functional screening accelerates comprehensive assessment of gene function in cells. Here, we have established a genome-scale loss-of-function screening strategy that combined a cytosine base editor with approximately 12,000 parallel sgRNAs targeting 98.1% of total genes in Corynebacterium glutamicum ATCC 13032. Unlike previous data processing methods developed in yeast or mammalian cells, we developed a new data processing procedure to locate candidate genes by statistical sgRNA enrichment analysis. Known and novel functional genes related to 5-fluorouracil resistance, 5-fluoroorotate resistance, oxidative stress tolerance, or furfural tolerance have been identified. In particular, purU and serA were proven to be related to the furfural tolerance in C. glutamicum. A cloud platform named FSsgRNA-Analyzer was provided to accelerate sequencing data processing for CRISPR-based functional screening. Our method would be broadly useful to functional genomics study and strain engineering in other microorganisms.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Furaldehído , Edición Génica/métodos , Genómica/métodos , Fenotipo
9.
Nat Commun ; 13(1): 891, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173152

RESUMEN

Development of hyperproducing strains is important for biomanufacturing of biochemicals and biofuels but requires extensive efforts to engineer cellular metabolism and discover functional components. Herein, we optimize and use the CRISPR-assisted editing and CRISPRi screening methods to convert a wild-type Corynebacterium glutamicum to a hyperproducer of L-proline, an amino acid with medicine, feed, and food applications. To facilitate L-proline production, feedback-deregulated variants of key biosynthetic enzyme γ-glutamyl kinase are screened using CRISPR-assisted single-stranded DNA recombineering. To increase the carbon flux towards L-proline biosynthesis, flux-control genes predicted by in silico analysis are fine-tuned using tailored promoter libraries. Finally, an arrayed CRISPRi library targeting all 397 transporters is constructed to discover an L-proline exporter Cgl2622. The final plasmid-, antibiotic-, and inducer-free strain produces L-proline at the level of 142.4 g/L, 2.90 g/L/h, and 0.31 g/g. The CRISPR-assisted strain development strategy can be used for engineering industrial-strength strains for efficient biomanufacturing.


Asunto(s)
Bioingeniería/métodos , Reactores Biológicos/microbiología , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Prolina/biosíntesis , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Proteínas Portadoras/genética , Edición Génica/métodos , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Transporte de Proteínas/genética
10.
Front Microbiol ; 12: 718511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367120

RESUMEN

Corynebacterium glutamicum is an important workhorse for industrial production of diversiform bioproducts. Precise regulation of gene expression is crucial for metabolic balance and enhancing production of target molecules. Auto-inducible promoters, which can be activated without expensive inducers, are ideal regulatory tools for industrial-scale application. However, few auto-inducible promoters have been identified and applied in C. glutamicum. Here, a hyperosmotic stress inducible gene expression system was developed and used for metabolic engineering of C. glutamicum. The promoter of NCgl1418 (P NCgl1418 ) that was activated by the two-component signal transduction system MtrA/MtrB was found to exhibit a high inducibility under hyperosmotic stress conditions. A synthetic promoter library was then constructed by randomizing the flanking and space regions of P NCgl1418 , and mutant promoters exhibiting high strength were isolated via fluorescence activated cell sorting (FACS)-based high-throughput screening. The hyperosmotic stress inducible gene expression system was applied to regulate the expression of lysE encoding a lysine exporter and repress four genes involved in lysine biosynthesis (gltA, pck, pgi, and hom) by CRISPR interference, which increased the lysine titer by 64.7% (from 17.0 to 28.0 g/L) in bioreactors. The hyperosmotic stress inducible gene expression system developed here is a simple and effective tool for gene auto-regulation in C. glutamicum and holds promise for metabolic engineering of C. glutamicum to produce valuable chemicals and fuels.

11.
Sensors (Basel) ; 21(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203331

RESUMEN

Time synchronization is the basis of many applications. Aiming at the limitations of the existing clock synchronization algorithms in underwater wireless sensor networks, we propose a pairwise synchronization algorithm called K-Sync, which is based on the Kalman filter. The algorithm does not need the assistance of the position sensor or the speed sensor, and the high time synchronization accuracy can be realized only by utilizing the time-stamps information in the process of message exchange. The K-Sync uses the general constraints of the motion characteristics of the sensor nodes to establish the recursive equations of the clock skew, clock offset, relative mobility velocity, and relative distance. At the same time, the time-stamps are viewed as the observation variables and the system observation equation is obtained. The K-Sync estimates the normalized clock skew and offset of the node via the Kalman filter to achieve high-precision clock synchronization between the two nodes. The simulation shows that the K-Sync has obvious advantages in the key indicators such as the estimated accuracy of clock skew and clock offset, convergence speed, etc. In addition, the K-Sync is more robust to a variety of underwater motion scenes.

12.
Microb Biotechnol ; 14(4): 1797-1808, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34132489

RESUMEN

Methanol is a promising feedstock for biomanufacturing of fuels and chemicals. Although efforts have been made to engineer platform microorganisms for methanol bioconversion, the substrate uptake and cell growth rates on methanol are still unsatisfactory, suggesting certain limiting factors remain unsolved. Herein, we analysed the global metabolic regulation changes between an evolved methanol-dependent Corynebacterium glutamicum mutant and its ancestral strain by transcriptome analysis. Many genes involved in central metabolism including glycolysis, amino acid biosynthesis and energy generation were regulated, implying the adaptive laboratory evolution reprogrammed the cellular metabolism for methanol utilization. We then demonstrated that nitrate could serve as a complementary electron acceptor for aerobic methanol metabolism, and the biosynthesis of several amino acids limited methylotrophic growth. Finally, the sedoheptulose bisphosphatase pathway for generating methanol assimilation acceptor was found effective in C. glutamicum. This study identifies limiting factors of methanol metabolism and provides engineering targets for developing superior synthetic methylotrophs.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Perfilación de la Expresión Génica , Heptosas , Ingeniería Metabólica , Metanol , Nitrógeno
13.
Nat Commun ; 12(1): 678, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514753

RESUMEN

Reprogramming complex cellular metabolism requires simultaneous regulation of multigene expression. Ex-situ cloning-based methods are commonly used, but the target gene number and combinatorial library size are severely limited by cloning and transformation efficiencies. In-situ methods such as multiplex automated genome engineering (MAGE) depends on high-efficiency transformation and incorporation of heterologous DNA donors, which are limited to few microorganisms. Here, we describe a Base Editor-Targeted and Template-free Expression Regulation (BETTER) method for simultaneously diversifying multigene expression. BETTER repurposes CRISPR-guided base editors and in-situ generates large numbers of genetic combinations of diverse ribosome binding sites, 5' untranslated regions, or promoters, without library construction, transformation, and incorporation of DNA donors. We apply BETTER to simultaneously regulate expression of up to ten genes in industrial and model microorganisms Corynebacterium glutamicum and Bacillus subtilis. Variants with improved xylose catabolism, glycerol catabolism, or lycopene biosynthesis are respectively obtained. This technology will be useful for large-scale fine-tuning of multigene expression in both genetically tractable and intractable microorganisms.


Asunto(s)
Edición Génica/métodos , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Familia de Multigenes/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , ADN Bacteriano/genética , Escherichia coli/genética , Genes Bacterianos/genética , Glicerol/metabolismo , Licopeno/metabolismo , Redes y Vías Metabólicas/genética , Transformación Bacteriana , Xilosa/metabolismo
14.
ACS Synth Biol ; 9(7): 1781-1789, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32551562

RESUMEN

Base editing technology based on clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) is a recent addition to the family of CRISPR technologies. Compared with the traditional CRISPR/Cas9 technology, it does not rely on DNA double strand break and homologous recombination, and can realize gene inactivation and point mutation more quickly and simply. Herein, we first developed a base editing method for genome editing in Bacillus subtilis utilizing CRISPR/dCas9 (a fully nuclease-deficient mutant of Cas9 from S. pyogenes) and activation-induced cytidine deaminase (AID). This method achieved three and four loci simultaneous editing with editing efficiency up to 100% and 50%, respectively. Our base editing system in B. subtilis has a 5 nt editing window, which is similar to previously reported base editing in other microorganisms. We demonstrated that the plasmid curing rate is almost 100%, which is advantageous for multiple rounds of genome engineering in B. subtilis. Finally, we applied multiplex genome editing to generate a B. subtilis 168 mutant strain with eight inactive extracellular protease genes in just two rounds of base editing and plasmid curing, suggesting that it is a powerful tool for gene manipulation in B. subtilis and industrial applications in the future.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Citidina Desaminasa/genética , Citosina Desaminasa/genética , Edición Génica/métodos , Proteína 9 Asociada a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Roturas del ADN de Doble Cadena , Sitios Genéticos , Genoma Bacteriano , Plásmidos/genética , Plásmidos/metabolismo , Mutación Puntual , Streptococcus pyogenes/enzimología
15.
Commun Biol ; 3(1): 217, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382107

RESUMEN

Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform microorganisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol concentrations rebalance methylotrophic metabolism by down-regulating glycolysis and up-regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-L-homoserine sulfhydrylase Cgl0653 catalyzing formation of L-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of tolerance engineering in developing superior synthetic methylotrophs.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Evolución Molecular , Ingeniería Metabólica , Metanol/metabolismo , Microbiología Industrial , Laboratorios
16.
Biotechnol Bioeng ; 116(11): 3016-3029, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317533

RESUMEN

CRISPR/Cas9-guided cytidine deaminase enables C:G to T:A base editing in bacterial genome without introduction of lethal double-stranded DNA break, supplement of foreign DNA template, or dependence on inefficient homologous recombination. However, limited by genome-targeting scope, editing window, and base transition capability, the application of base editing in metabolic engineering has not been explored. Herein, four Cas9 variants accepting different protospacer adjacent motif (PAM) sequences were used to increase the genome-targeting scope of bacterial base editing. After a comprehensive evaluation, we demonstrated that PAM requirement of bacterial base editing can be relaxed from NGG to NG using the Cas9 variants, providing 3.9-fold more target loci for gene inactivation in Corynebacterium glutamicum. Truncated or extended guide RNAs were employed to expand the canonical 5-bp editing window to 7-bp. Bacterial adenine base editing was also achieved with Cas9 fused to adenosine deaminase. With these updates, base editing can serve as an enabling tool for fast metabolic engineering. To demonstrate its potential, base editing was used to deregulate feedback inhibition of aspartokinase via amino acid substitution for lysine overproduction. Finally, a user-friendly online tool named gBIG was provided for designing guide RNAs for base editing-mediated inactivation of given genes in any given sequenced genome (www.ibiodesign.net/gBIG).


Asunto(s)
Aspartato Quinasa , Proteínas Bacterianas , Sistemas CRISPR-Cas , Corynebacterium glutamicum , Edición Génica , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/genética
17.
Microb Cell Fact ; 18(1): 106, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186003

RESUMEN

BACKGROUND: Late-stage fermentation broth contains high concentrations of target chemicals. Additionally, it contains various cellular metabolites which have leaked from lysed cells, which would exert multifactorial stress to industrial hyperproducers and perturb both cellular metabolism and product formation. Although adaptive laboratory evolution (ALE) has been wildly used to improve stress tolerance of microbial cell factories, single-factor stress condition (i.e. target product or sodium chloride at a high concentration) is currently provided. In order to enhance bacterial stress tolerance to actual industrial production conditions, ALE in late-stage fermentation broth is desired. Genome replication engineering assisted continuous evolution (GREACE) employs mutants of the proofreading element of DNA polymerase complex (DnaQ) to facilitate mutagenesis. Application of GREACE coupled-with selection under stress conditions is expected to accelerate the ALE process. RESULTS: In this study, GREACE was first modified by expressing a DnaQ mutant KR5-2 using an arabinose inducible promoter on a temperature-sensitive plasmid, which resulted in timed mutagenesis introduction. Using this method, tolerance of a lysine hyperproducer E. coli MU-1 was improved by enriching mutants in a lysine endpoint fermentation broth. Afterwards, the KR5-2 expressing plasmid was cured to stabilize acquired genotypes. By subsequent fermentation evaluation, a mutant RS3 with significantly improved lysine production capacity was selected. The final titer, yield and total amount of lysine produced by RS3 in a 5-L batch fermentation reached 155.0 ± 1.4 g/L, 0.59 ± 0.02 g lysine/g glucose, and 605.6 ± 23.5 g, with improvements of 14.8%, 9.3%, and 16.7%, respectively. Further metabolomics and genomics analyses, coupled with molecular biology studies revealed that mutations SpeBA302V, AtpBS165N and SecYM145V mainly contributed both to improved cell integrity under stress conditions and enhanced metabolic flux into lysine synthesis. CONCLUSIONS: Our present study indicates that improving a lysine hyperproducer by GREACE-assisted ALE in its stressful living environment is efficient and effective. Accordingly, this is a promising method for improving other valuable chemical hyperproducers.


Asunto(s)
Evolución Molecular Dirigida/métodos , Escherichia coli/metabolismo , Lisina/metabolismo , Ingeniería Metabólica/métodos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Fermentación , Mutagénesis
18.
Sheng Wu Gong Cheng Xue Bao ; 34(11): 1760-1771, 2018 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-30499272

RESUMEN

Promoter, an essential regulatory element, is widely used for metabolic engineering of industrial strains. Corynebacterium glutamicum is an important industrial workhorse to produce various amino acids. However, strong constitutive promoters that are applicable to C. glutamicum are rarely reported. In this study, we first performed a time-series transcriptome analysis of a glutamate hyper-producing strain C. glutamicum SL4 by using RNA-Seq. Overall, we picked 10 samples at different time during the fermentation process. By analyzing the time-series transcriptome data, we selected 10 candidate genes with the highest transcriptional level. These genes were all transcribed stably during the fermentation process. We subsequently cloned the promoter sequences and evaluated the promoters' strength in strain SL4 using a red fluorescent protein reporter system. To evaluate the universality of the promoters in different C. glutamicum strains, we further tested the performance of some promoters in wild type C. glutamicum strains, including ATCC 13869 and ATCC 13032. The strongest promoter was further characterized using LacZ as a reporter in all the three C. glutamicum strains. Finally, we successfully obtained three constitutive promoters with universality, PcysK, PgapA and PfumC. PcysK is the most efficient promoter among the three C. glutamicum strains. In strains SL4 and ATCC 13869, the strength of PcysK is 2-fold of the strong inducible promoter Ptac using the red fluorescent protein as a reporter and 4-fold of Ptac using LacZ as a reporter. Moreover, the strength of PcysK reaches 30%-40% of Ptac in strain ATCC 13032. The promoter PcysK is identified as a strong promoter for the first time, which can be used as an efficient biobrick for metabolic engineering of synthesis pathways in C. glutamicum.


Asunto(s)
Corynebacterium glutamicum/genética , Ingeniería Metabólica , Regiones Promotoras Genéticas , Transcriptoma , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica
19.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30341076

RESUMEN

Corynebacterium glutamicum is frequently engineered to serve as a versatile platform and model microorganism. However, due to its complex cell wall structure, transformation of C. glutamicum with exogenous DNA is inefficient. Although efforts have been devoted to improve the transformation efficiency by using cell wall-weakening agents, direct genetic engineering of cell wall synthesis for enhancing cell competency has not been explored thus far. Herein, we reported that engineering of peptidoglycan synthesis could significantly increase the transformation efficiency of C. glutamicum Comparative analysis of C. glutamicum wild-type strain ATCC 13869 and a mutant with high electrotransformation efficiency revealed nine mutations in eight cell wall synthesis-related genes. Among them, the Y489C mutation in bifunctional peptidoglycan glycosyltransferase/peptidoglycan dd-transpeptidase PonA dramatically increased the electrotransformation of strain ATCC 13869 by 19.25-fold in the absence of cell wall-weakening agents, with no inhibition on growth. The Y489C mutation had no effect on the membrane localization of PonA but affected the peptidoglycan structure. Deletion of the ponA gene led to more dramatic changes to the peptidoglycan structure but only increased the electrotransformation by 4.89-fold, suggesting that appropriate inhibition of cell wall synthesis benefited electrotransformation more. Finally, we demonstrated that the PonAY489C mutation did not cause constitutive or enhanced glutamate excretion, making its permanent existence in C. glutamicum ATCC 13869 acceptable. This study demonstrates that genetic engineering of genes involved in cell wall synthesis, especially peptidoglycan synthesis, is a promising strategy to improve the electrotransformation efficiency of C. glutamicumIMPORTANCE Metabolic engineering and synthetic biology are now the key enabling technologies for manipulating microorganisms to suit the practical outcomes desired by humankind. The introduction of exogenous DNA into cells is an indispensable step for this purpose. However, some microorganisms, including the important industrial workhorse Corynebacterium glutamicum, possess a complex cell wall structure to shield cells against exogenous DNA. Although genes responsible for cell wall synthesis in C. glutamicum are known, engineering of related genes to improve cell competency has not been explored yet. In this study, we demonstrate that mutations in cell wall synthesis genes can significantly improve the electrotransformation efficiency of C. glutamicum Notably, the Y489C mutation in bifunctional peptidoglycan glycosyltransferase/peptidoglycan dd-transpeptidase PonA increased electrotransformation efficiency by 19.25-fold by affecting peptidoglycan synthesis.


Asunto(s)
Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Mutación , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Aminoaciltransferasas/genética , Proteínas Portadoras , Pared Celular/metabolismo , ADN Bacteriano/genética , Ácido Glutámico/metabolismo , Ingeniería Metabólica , Proteínas de Microfilamentos , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/química , Peptidoglicano Glicosiltransferasa/genética
20.
J Biosci Bioeng ; 126(4): 470-477, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29805115

RESUMEN

trans-4-Hydroxy-l-proline (trans-4Hyp) is widely used as a valuable building block for the organic synthesis of many pharmaceuticals such as carbapenem antibiotics. The major limitation for industrial bioproduction of trans-4Hyp is the low titer and productivity by using the existing trans-proline 4-hydroxylases (trans-P4Hs). Herein, three new trans-P4Hs from Alteromonas mediterranea (AlP4H), Micromonospora sp. CNB394 (MiP4H) and Sorangium cellulosum (ScP4H) were discovered through genome mining and enzymatic determination. These trans-P4Hs were introduced into an l-proline-producing chassis cell, and the recombinant strain overexpressing AlP4H produced the highest concentration of trans-4Hyp (3.57 g/L) from glucose in a shake flask. In a fed-batch fermentation with a 5 L bioreactor, the best strain SEcH (pTc-B74A-alp4h) accumulated 45.83 g/L of trans-4Hyp within 36 h, with the highest productivity (1.27 g/L/h) in trans-4Hyp fermentation from glucose, to the best of our knowledge. This study provides a promising hydroxylase candidate for efficient industrial production of trans-4Hyp.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , Hidroxiprolina/biosíntesis , Oxigenasas de Función Mixta/genética , Alteromonas/enzimología , Proteínas Bacterianas/metabolismo , Reactores Biológicos , Fermentación , Ingeniería Metabólica , Micromonospora/enzimología , Oxigenasas de Función Mixta/metabolismo , Prolina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...