Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
J Agric Food Chem ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832583

RESUMEN

Keratinases is a special hydrolytic enzyme produced by microorganisms, which has the ability to catalyze the degradation of keratin. Currently, keratinases show great potential for application in many agricultural and industrial fields, such as biofermented feed, leather tanning, hair removal, and fertilizer production. However, these potentials have not yet been fully unleashed on an industrial scale. This paper reviews the sources, properties, and catalytic mechanisms of keratinases. Strategies for the molecular modification of keratinases are summarized and discussed in terms of improving the substrate specificity, thermostability, and pH tolerance of keratinases. The modification strategies are also enriched by the introduction of immobilized enzymes and directed evolution. In addition, the selection of modification strategies when facing specific industrial applications is discussed and prospects are provided. We believe that this review serves as a reference for the future quest to extend the application of keratinases from the laboratory to industry.

2.
Prep Biochem Biotechnol ; : 1-9, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824495

RESUMEN

Wheat straw contains a high amount of lignin, hindering the action of cellulase and hemicellulase enzymes, leading to difficulties in nutrient absorption by animals from straw feed. However, currently, the biological treatment of straw relies primarily on fungal degradation and cannot be directly utilized for the preparation of livestock feed. This study focuses on enzymatic co-fermentation of wheat straw to produce high-protein, low-cellulose biological feed, integrating lignin degradation with feed manufacturing, thereby simplifying the feed production process. After the optimization using Box-Behnken Design for the feed formulation, with a glucose oxidase addition of 2.46%, laccase addition of 3.4%, and malonic acid addition of 0.6%, the wheat straw feed prepared in this experiment exhibited a true protein content of 9.35%. This represented a fourfold increase compared to the non-fermented state, and the lignocellulose degradation rate of wheat straw reached 45.42%. These results not only highlight the substantial enhancement in protein content but also underscore the significant advancement in lignocellulose breakdown. This formulation significantly enhanced the palatability and nutritional value of the straw feed, contributing to the industrial development of straw feed.

3.
World J Microbiol Biotechnol ; 40(6): 195, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722426

RESUMEN

Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Regiones Promotoras Genéticas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Señales de Clasificación de Proteína/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-38717735

RESUMEN

Limosilactobacillus fermentum is an important member of the lactic acid bacteria group and holds immense potential for probiotic properties in human health and relevant industries. In this study, a comparative probiogenomic approach was applied to analyze the genome sequence of L. fermentum 3872, which was extracted from a commercially available yogurt sample, along with 20 different publicly available strains. Results indicate that the genome size of the characterized L. fermentum 3892 strain is 2,057,839 bp, with a single- and circular-type chromosome possessing a G + C content of 51.69%. The genome of L. fermentum 3892 strain comprises a total of 2120 open reading frames (ORFs), two genes encoding rRNAs, and 53 genes encoding tRNAs. Upon comparative probiogenomic analysis, two plasmid sequences were detected among the study strains, including one for the L. fermentum 3872 genome, which was found between position 1,288,203 and 1,289,237 with an identity of 80.98. The whole-genome alignment revealed 2223 identical sites and a pairwise identity of 98.9%, indicating a significant difference of 1.1% among genome strains. Comparison of amino acid encoding genes among strains included in this study suggests that the strain 3872 exhibited the highest degree of amino acids present, including glutamine, glutamate, aspartate, asparagine, lysine, threonine, methionine, and cysteine. The comparative antibiotic resistome profiling revealed that strain 3872 exhibited a high resistant capacity only to ciprofloxacin antibiotics as compared to other strains. This study provides a genomic-based evaluation approach for comparative probiotic strain analysis in commercial foods and their significance to human health.

5.
Hum Cell ; 37(4): 931-943, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38814516

RESUMEN

Immunosuppressive regulatory cells (IRCs) play important roles in negatively regulating immune response, and are mainly divided into myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Large numbers of preclinical and clinical studies have shown that inhibition or reduction of IRCs could effectively elevate antitumor immune responses. However, several studies also reported that excessive inhibition of IRCs function is one of the main reasons causing the side effects of cancer immunotherapy. Therefore, the reasonable regulation of IRCs is crucial for improving the safety and efficiency of cancer immunotherapy. In this review, we summarised the recent research advances in the cancer immunotherapy by regulating the proportion of IRCs, and discussed the roles of IRCs in regulating tumour immune evasion and drug resistance to immunotherapies. Furthermore, we also discussed how to balance the potential opportunities and challenges of using IRCs to improve the safety of cancer immunotherapies.


Asunto(s)
Inmunoterapia , Células Supresoras de Origen Mieloide , Neoplasias , Linfocitos T Reguladores , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología , Células Supresoras de Origen Mieloide/inmunología , Escape del Tumor/inmunología , Resistencia a Antineoplásicos/inmunología , Animales , Terapia de Inmunosupresión
6.
Poult Sci ; 103(5): 103606, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479096

RESUMEN

The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.


Asunto(s)
Alimentación Animal , Péptido Hidrolasas , Aves de Corral , Animales , Alimentación Animal/análisis , Pollos/genética , Expresión Génica , Queratinas/metabolismo , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-38411933

RESUMEN

Lignin peroxidase (LiP) has a good application prospect in lignin degradation, environmental treatment, straw feed, and other industries. However, its application is constrained by the high price and low stability of enzyme preparation. In this study, the Escherichia coli-Bacillus subtilis (E. coli-B. subtilis) shuttle expression vector pHS-cotG-lip was constructed and displayed on the surface of Bacillus subtilis spores. The analysis of enzymatic properties showed that the optimal catalytic temperature and pH of the immobilized LiP were 55 °C and 4.5, respectively. Compared with free LiP (42 °C and pH4.0), the optimal reaction temperature increased by 13 °C. After incubation at 70 °C for 1 h, its activity remained above 30%, while the free LiP completely lost its activity under the same conditions. Adding Mn2+, DL-lactic acid, and PEG-4000 increased the CotG-LiP enzyme activity to 313%, 146%, and 265%, respectively. The recyclability of spore display made the fusion protein CotG-LiP retain more than 50% enzyme activity after four cycles. The excellent recycling rate indicated that LiP displayed on the spore surface had a good application prospect in sewage treatment and other fields, and also provided a reference for the rapid and low-cost immobilized production of enzyme preparations.

8.
Protein Expr Purif ; 218: 106448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38373510

RESUMEN

Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time. Enzymatic characterization revealed that spore surface display enhanced the tolerance of psCDH to high temperature (80 °C) and low pH levels (3.5) compared to free psCDH. Furthermore, we found that glycerol, lactic acid, and malic acid promoted the activity of immobilized spore-displayed psCDH; glycerol has a more significant stimulating effect, increasing the activity from 16.86 ± 1.27 U/mL to 46.26 ± 3.25 U/mL. After four reuse cycles, the psCDH immobilized with spores retained 48% of its initial activity, demonstrating a substantial recovery rate. In conclusion, the spore display system, relying on cotG, enables the expression and immobilization of CDH while enhancing its resistance to adverse conditions. This system demonstrates efficient enzyme recovery and reuse. This approach provides a novel method and strategy for the immobilization and stability enhancement of CDH.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Deshidrogenasas de Carbohidratos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicerol/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/química
9.
World J Microbiol Biotechnol ; 40(1): 35, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057620

RESUMEN

Feather, horn, hoof, and other keratin waste are protein-rich but limited by natural keratinase synthesis, activity, pH, and temperature stability. It is challenging to realize its large-scale application in industries. Bacillus subtilis spores are a safe, efficient, and highly resistant immobilized carrier, which can improve target proteins' resistance. In this research, KERQ7, the keratinase gene of Bacillus tequilensis strain Q7, was fused to the Bacillus subtilis genes coding for the coat proteins CotG and CotB, respectively, and displayed on the surface of B. subtilis spores. Compared with the free KERQ7, the immobilized KERQ7 showed a greater pH tolerance and heat resistance on the spore surface. The activity of CotG-KERQ7 is 1.25 times that of CotB-KERQ7, and CotG-KERQ7 is more stable. When the flexible linker peptide L3 was used to connect CotG and KERQ7, the activity was increased to 131.2 ± 3.4%, and the residual enzyme activity was still 62.5 ± 2.2% after being kept at 60 ℃ for 4 h. These findings indicate that the flexible linker and CotG were more effective for the spore surface display of keratinase to improve stress resistance and promote its wide application in feed, tanning, washing, and other industries.


Asunto(s)
Proteínas Bacterianas , Esporas Bacterianas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo
10.
Prep Biochem Biotechnol ; : 1-8, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843104

RESUMEN

Heterogous expression of lignin peroxidase (LiP) from Phanerochaete chrysosporium was performed in by E. coli prokaryotic expression system, and pure LiP was prepared by washing, refolding, and purification. The enzyme activity was measured by the resveratrol oxidation method. The effects of different chemicals on LiP activity were explored by adding different kinds of metal ions, acids/phenols, and surfactants. The optimal pH and temperature are 4.2 and 40 °C. The single-factor screening experiment showed that adding 1 mM Mn2+, 0.1 mM DL-lactic acid, and 2% PEG-4000 had the best promotion effect on the enzyme activity of recombinant LiP, which was 160.61%, 188.46%, and 247.83%, respectively. Further, the synergistic addition of Mn2+ and PEG-4000 achieved the best enzyme activity promotion effect of 277.51%. In addition, the addition of DL-lactic acid alone could promote LiP activity. However, the co-addition of lactic acid with Mn2+ and PEG-4000 contributed only 247.87%, which indicated that the addition of DL-lactic acid had an inhibitory effect when applied synergistically. For the first time, it was found that PEG-4000 increased LiP enzyme activity obviously and had a synergistic effect with Mn2+, serving as a reference for LiP in studies and applications pertaining to lignin breakdown.

11.
J Bioinform Comput Biol ; 21(4): 2350018, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37675491

RESUMEN

Over the past decades, many existing drugs and clinical/preclinical compounds have been repositioned as new therapeutic indication from which they were originally intended and to treat off-target diseases by targeting their noncognate protein receptors, such as Sildenafil and Paxlovid, termed drug repurposing (DRP). Despite its significant attraction in the current medicinal community, the DRP is usually considered as a matter of accidents that cannot be fulfilled reliably by traditional drug discovery protocol. In this study, we proposed an integrated computational/experimental (iC/E) strategy to facilitate the DRP within a framework of rational drug design, which was practiced on the identification of new neuronal nitric oxide synthase (nNOS) inhibitors from a structurally diverse, functionally distinct drug pool. We demonstrated that the iC/E strategy is very efficient and readily feasible, which confirmed that the phosphodiesterase inhibitor DB06237 showed a high inhibitory potency against nNOS synthase domain, while other two general drugs, i.e. DB02302 and DB08258, can also inhibit the synthase at nanomolar level. Structural bioinformatics analysis revealed diverse noncovalent interactions such as hydrogen bonds, hydrophobic forces and van der Waals contacts across the complex interface of nNOS active site with these identified drugs, conferring both stability and specificity for the complex recognition and association.


Asunto(s)
Reposicionamiento de Medicamentos , Inhibidores Enzimáticos , Óxido Nítrico Sintasa de Tipo I , Citrato de Sildenafil/farmacología
12.
Front Med (Lausanne) ; 10: 1209977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359006

RESUMEN

Background: The physiological effects of HFNC devices are closely related to temperature and humidity. HFNC devices from different manufacturers may have varied performances. It is unclear whether there are differences in the humidification performance of different HFNC devices and the degree of differences. Methods: Four integrated HFNC devices (AIRVO 2, Fisher & Paykel Healthcare, Auckland, New Zealand; TNI softFlow 50, TNI Medical AG, Würzburg, Germany; HUMID-BH, RESPIRACARE, Shenyang, China; OH-70C, Micomme, Hunan, China) and a ventilator with an HFNC module (bellavista 1000, Imtmedical, Buchs, Switzerland) were evaluated using their matching circuits. The dew point temperature was set at 31, 34, and 37°C (set-DP). In MR850, it was set to non-invasive mode (34°C/-3°C) and invasive mode (40°C/-3°C), respectively. At each level of set-DP, the flow was set from 20 L/min up to its maximum set limit at a gradient of 5 L/min or 10 L/min. After stabilization, the dew point temperature, temperature, relative humidity, and flow rate of the delivered gas from the cannulas were recorded. Results: There were significant differences in actual-DP among these devices at any set-DP (p < 0.001). The actual-DP of OH-70C and TNI softFlow 50 was lower than set-DP, and the difference between the actual-DP and the set-DP of these two devices increased with the increase of set-DP. AIRVO 2, bellavista 1000 (MR850), and HUMID-BH can provide the nominal humidity at 37°C. The actual-DP increased with the increase of set-flow under each set-DP in AIRVO 2, TNI softFlow 50 and bellavista 1000 (MR850), but decreased when the set-flow was greater than 60 L/min. The actual-T of the delivered gas was higher than actual-DP in all devices and was higher than set-DP in AIRVO 2 and HUMID-BH. Conclusion: Set-flow, set-DP, and types of devices will affect the actual temperature and humidity of the delivered gas. AIRVO 2, bellavista 1000 (MR850), and HUMID-BH can provide the nominal humidity at 37°C and may be more suitable for tracheotomy patients. The flow rate over 60 L/min should be set with caution.

13.
Appl Microbiol Biotechnol ; 107(4): 1003-1017, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633625

RESUMEN

Keratin is regarded as the main component of feathers and is difficult to be degraded by conventional proteases, leading to substantial abandonment. Keratinase is the only enzyme with the most formidable potential for degrading feathers. Although there have been in-depth studies in recent years, the large-scale application of keratinase is still associated with many problems. It is relatively challenging to find keratinase not only with high activity but could also meet the industrial application environment, so it is urgent to exploit keratinase with high acid and temperature resistance, strong activity, and low price. Therefore, researchers have been keen to explore the degradation mechanism of keratinases and the modification of existing keratinases for decades. This review critically introduces the basic properties and mechanism of keratinase, and focuses on the current situation of keratinase modification and the direction and strategy of its future application and modification. KEY POINTS: •The research status and mechanism of keratinase were reviewed. •The new direction of keratinase application and modification is discussed. •The existing modification methods and future modification strategies of keratinases are reviewed.


Asunto(s)
Endopeptidasas , Péptido Hidrolasas , Animales , Péptido Hidrolasas/metabolismo , Endopeptidasas/metabolismo , Queratinas/metabolismo , Plumas/metabolismo , Concentración de Iones de Hidrógeno
14.
Biotechnol Lett ; 45(1): 95-104, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36482053

RESUMEN

OBJECTIVES: Maximizing the utility value of enzymes was achieved by exploring the effects of small molecules on the efficiency of lignin degradation by lignin peroxidase. METHODS: Using wheat straw as raw material and taking lignin degradation rate as index, it was found that laccase, glucose oxidase, malonic acid, citric acid, ZnSO4, CaCl2 could promote the lignin degradation by the lignin peroxidase from Irpex lacteus, respectively. Moreover, glucose oxidase, malonic acid and CaCl2 had obvious synergy effects on lignin degradation by the lignin peroxidase. RESULTS: The optimal conditions of lignin degradation were obtained by response surface experiment: 4% glucose oxidase, 0.74% malonic acid and 3.29% CaCl2 were added for synergistic degradation at 37 â„ƒ with 50% of water content. After 72 h quickly enzymatic hydrolysis, the degradation rate of lignin was 45.84%. CONCLUSIONS: A new green and efficient method for lignin removal from straw was obtained, which provided a reference for the efficient utilization of straw and lignin peroxidase.


Asunto(s)
Glucosa Oxidasa , Lignina , Lignina/metabolismo , Cloruro de Calcio
15.
Appl Biochem Biotechnol ; 195(6): 3855-3871, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36251112

RESUMEN

Lignocellulose in maize straw includes cellulose, hemicellulose, and lignin, and the degradation of lignocellulose is a complex process in which multiple enzymes are jointly involved. In exploring the co-degradation of a certain substrate by multiple enzymes, different enzymes are combined freely for the achievement of the effective synergism. Additionally, some organic acids and small molecule aromatic compounds can also increase the enzymatic activity of lignin enzymes and improve the degradation rate of lignin. In this study, manganese peroxidase (MnP) from Irpex lacteus (I. lacteus) was heterologously expressed in food-grade Schizosaccharomyces pombe (S. pombe). The multiple enzymes co-fermentation conditions were initially screened by orthogonal tests: 0.5% CaCl2, 1% 10,000 U/g Laccase (Lac), 0.3% MnSO4, and 0.4% glucose oxidase (GOD). It was showed that the lignin degradation rate could reach 65.85% after 3 days of synergistic degradation with the addition of 0.02% Tween-80, 0.5 mM oxalic acid. This indicates that oxalic acid has a promoting effect on the activity of MnP, and the promoting effect is more significant when Tween-80 is complexed with oxalic acid.


Asunto(s)
Lignina , Zea mays , Lignina/metabolismo , Zea mays/metabolismo , Polisorbatos , Peroxidasas/metabolismo , Oxalatos
16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1008876

RESUMEN

This study aims to evaluate the efficacy and safety of Compound Qinlan Oral Liquid in the treatment of acute upper respiratory tract infection. Computer-based online searching of CNKI, VIP, SinoMed, Wanfang, ChiCTR, ClinicalTrials.gov, Cochrane Library, PubMed, EMbase, and Web of Science was performed to retrieve the randomized controlled trial(RCT) regarding Compound Qinlan Oral Liquid in the treatment of acute upper respiratory tract infection. In addition, manual searching of gray literature was conducted. After two evaluators independently selected articles, extracted data, and evaluated the quality of methodology included in the studies, Meta-analysis was carried out in RevMan 5.4 and trial sequential analysis(TSA) in TSA 0.9.5.10 Beta. GRADE profiler 3.6.1 was employed to evaluate the evidence quality. A total of 21 RCTs were included in this study, involving 2 651 patients(1 330 patients in the observation group and 1 321 patients in the control group). Meta-analysis showed that compared with conventional western medicine alone, Compound Qinlan Oral liquid improved the total response rate(RR=1.15, 95%CI[1.12, 1.19], P<0.000 01) without increasing the incidence of adverse reactions(RR=0.77, 95%CI[0.47, 1.25], P=0.16). The results of subgroup analysis are described as follows:(1) Compared with conventional western medicine alone, Compound Qinlan Oral Liquid improved the total response rate(RR=1.10, 95%CI[1.05, 1.14], P<0.000 01) and shortened the time to symptom relief(SMD=-0.76, 95%CI[-1.02,-0.51], P<0.000 01). There was no significant difference in the incidence of adverse reactions between the two groups(RR=1.16, 95%CI[0.54, 2.47], P=0.71).(2) Compared with conventional western medicine alone, Compound Qinlan Oral Liquid + conventional western medicine improved the total response rate(RR=1.20, 95%CI[1.15, 1.25], P<0.000 01), decreased traditional Chinese medicine(TCM) syndrome scores(MD=-0.58, 95%CI[-0.75,-0.41], P<0.000 01), shortened the time to symptom relief(SMD=-2.44, 95%CI[-3.09,-1.80], P<0.000 01) and physical sign improvement(MD=-2.57, 95%CI[-4.11,-1.04], P=0.001), lowered the serum levels of inflammatory cytokines(SMD=-2.16, 95%CI[-2.61,-1.70], P<0.000 01), improved respiratory function indicators(SMD=1.48, 95%CI[1.00, 1.96], P<0.000 01), and enhanced the humoral immunity(MD=0.94, 95%CI[0.69, 1.18], P<0.000 01). There was no significant difference in the incidence of adverse reactions between the two groups(RR=0.57, 95%CI[0.29, 1.09], P=0.09). TSA showed that the cumulative Z curve of total response rate crossed the traditional threshold and TSA threshold, further confirming the clinical efficacy of Compound Qinlan Oral Liquid. The GRADE graded the evidence of the above outcome indicators as low or extremely low, and yielded weak recommendation. Compared with conventional western medicine alone, Compound Qinlan Oral Liquid can improve the total effective rate and reduce the time to symptom relief. The combination of Compound Qinlan Oral Liquid and conventional western medicine can improve the total response rate, mitigate the symptoms and improve the physical signs, reduce inflammation, and improve respiratory function and immunity of the patients with acute upper respiratory tract infection. In view of the limited number and quality of the included studies, the above conclusions still require high-quality RCT to provide evidence support.


Asunto(s)
Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Inflamación/tratamiento farmacológico , Medicina Tradicional China , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Resultado del Tratamiento
17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1008735

RESUMEN

This study aimed to evaluate the efficacy and safety of Chaihuang Granules in the treatment of upper respiratory tract infection in children. The databases such as CNKI, Wanfang, VIP, SinoMed, Cochrane Library, PubMed, EMbase, Web of Science, Chinese Clinical Trial Registry, and ClinicalTrials.gov were searched for randomized controlled trial(RCT) of Chaihuang Granules for the treatment of upper respiratory tract infection in children, and supplemented by manual searching of gray literature. Two investigators independently screened the literature, extracted data, and assessed the methodological quality. Meta-analysis was performed using RevMan 5.4 software, trial sequential analysis was conducted using TSA 0.9.5.10 Beta software, and evidence quality evaluation was carried out using GRADE profiler 3.6.1 software. Eighteen RCTs involving 2 459 patients(1 262 in the treatment group and 1 197 in the control group) were included. Meta-analysis showed that compared with conventional therapy alone, Chaihuang Granules significantly improved the total effective rate(RR=1.18, 95%CI[1.15, 1.22], P<0.000 01), reduced the disappearance time of symptoms/signs(MD=-1.39, 95%CI[-1.66,-1.12], P<0.000 01), improved cytokine levels(MD=-2.40, 95%CI[-3.80,-1.00], P=0.000 8), improved humoral immune levels(MD=0.75, 95%CI[0.60, 0.90], P<0.000 01), and reduced the recurrence rate(MD=-2.11, 95%CI[-2.98,-1.25], P<0.000 01). However, the incidence of adverse reactions was not increased(RR=0.94, 95%CI[0.59, 1.49], P=0.78). Subgroup analysis showed that:(1) both Chaihuang Granules used alone(RR=1.19, 95%CI[1.11, 1.27], P<0.000 01) and in combination with other therapies(RR=1.18, 95%CI[1.14, 1.22], P<0.000 01) effectively improved the total effective rate.(2) In terms of symptoms/signs disappearance time, Chaihuang Granules effectively reduced the duration of fever(MD=-1.18, 95%CI[-1.78,-0.58], P=0.000 1), cough with sputum(MD=-1.82, 95%CI[-2.38,-1.25], P<0.000 01), cough(MD=-1.31, 95%CI[-1.89,-0.74], P<0.000 01), sore throat(MD=-1.57, 95%CI[-2.25,-0.89], P<0.000 01), and lung rales(MD=-1.49, 95%CI[-2.06,-0.92], P<0.000 01).(3) Regarding cytokine levels, Chaihuang Gra-nules effectively improved the levels of interleukin(IL)-2(MD=-0.94, 95%CI[-1.16,-0.72], P<0.000 01), IL-6(MD=-4.71, 95%CI[-6.39,-3.03], P<0.000 01), and tumor necrosis factor-α(TNF-α)(MD=-2.07, 95%CI[-2.43,-1.71], P<0.000 01).(4) In terms of cellular immune levels, Chaihuang Granules effectively improved the levels of CD3~+(MD=4.11, 95%CI[1.53, 6.69], P=0.002), CD4~+(MD=4.21, 95%CI[1.69, 6.73], P=0.001), CD8~+(MD=-2.65, 95%CI[-3.93,-1.37], P<0.000 1), and CD4~+/CD8~+(MD=0.25, 95%CI[0.14, 0.37], P<0.000 1).(5) In terms of humoral immune levels, Chaihuang Granules effectively improved the levels of IgA(MD=0.44, 95%CI[0.23, 0.64], P<0.000 1), IgM(MD=0.31, 95%CI[0.15, 0.46], P=0.000 1), and IgG(MD=2.02, 95%CI[1.60, 2.43], P<0.000 01). Trial sequential analysis showed that the cumulative Z-curve of the total effective rate crossed the boundary value, further confirming its clinical efficacy. The GRADE evidence quality evaluation showed that the evidence quality of the above outcome indicators was low or very low, and the recommendation strength was weak. Compared to conventional therapy alone, Chaihuang Granules can effectively improve the total effective rate of treatment, alle-viate symptoms and signs of upper respiratory tract infection in children, improve inflammatory conditions, enhance immune function, and reduce the recurrence rate. Due to the limited quality of the included studies, high-quality RCT is still needed to provide evidence support for the above conclusions.


Asunto(s)
Niño , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Resultado del Tratamiento , Ensayos Clínicos como Asunto , Infecciones del Sistema Respiratorio/tratamiento farmacológico
18.
Front Nutr ; 9: 1001412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245477

RESUMEN

To overcome the problems with current mineral supplements for laying hens including low absorption, mineral antagonism, and high cost, we developed mineral element fermentation complexes (MEFC) by synergistically fermenting bean dregs and soybean meal with strains and proteases and complexing with mineral elements. The fermentation complexation process was optimized based on the small peptide and organic acid contents and the complexation rate of mineral elements after fermentation. The optimal conditions were as follows: the total inoculum size was 5% (v/w), 15% (w/w) wheat flour middling was added to the medium, and mineral elements (with 4% CaCO3) were added after the completion of aerobic fermentation, fermentation at 34°C and 11 days of fermentation. Under these conditions, the complexation rates of Ca, Fe, Cu, Mn, and Zn were 90.62, 97.24, 73.33, 94.64, and 95.93%, respectively. The small peptide, free amino acid, and organic acid contents were 41.62%, 48.09 and 183.53 mg/g, respectively. After 60 days of fermentation, 82.11% of the Fe in the MEFC was ferrous ions, indicating that fermentation had a good antioxidant effect on ferrous ion, and the antioxidant protection period was at least 60 days. Fourier transform infrared spectroscopy showed that the mineral ions were complexed with amino and carboxyl groups. The added mineral elements promoted microbial growth, protein degradation, and organic acid secretion and significantly improved fermentation efficiency. Animal experiments showed that MEFC had positive effects on several parameters, including production performance (average daily feed intake, P < 0.05; egg production rate, P < 0.05; and average egg weight, P < 0.05), mineral absorption, intestinal morphology (villus height to crypt depth ratio in the jejunum and ileum, P < 0.05), and blood routine and biochemical indexes (red blood cells, P < 0.05; hemoglobin, P < 0.05). This study provides theoretical support for the development of mineral complexes for laying hens via fermentation.

19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-939664

RESUMEN

OBJECTIVES@#To study the characteristics of UGT1A1 gene mutations in Dong neonates in Sanjiang County of Liuzhou and its association with the pathogenesis of hyperbilirubinemia in Dong neonates.@*METHODS@#A prospective analysis was performed on 84 neonates who were diagnosed with unexplained hyperbilirubinemia in the Department of Neonatology, Sanjiang County People's Hospital, from January 2021 to January 2022. Sixty healthy neonates born during the same period were enrolled as the control group. Peripheral blood genomic DNA was extracted for both groups, and UGT1A1 exon 1 was amplified by PCR and sequenced.@*RESULTS@#In the case group, 33 neonates were found to have G71R missense mutation, with a mutation rate of 39%. The case group had a significantly higher frequency of A allele than the healthy control group (21% vs 10%, P<0.05). The risk of hyperbilirubinemia in Dong neonates carrying G71R missense mutation was 2.588 times as high as that in healthy neonates carrying wild-type UGT1A1 gene (P<0.05). Hardy-Weinberg equilibrium testing showed that the UGT1A1 G71R locus was in genetic equilibrium in both groups (P>0.05).@*CONCLUSIONS@#UGT1A1 G71R mutation is a high-frequency gene mutation type in Dong neonates in Sanjiang County, and G71R missense mutation is associated with hyperbilirubinemia in Dong neonates.


Asunto(s)
Humanos , Recién Nacido , Pueblo Asiatico/genética , China , Exones , Glucuronosiltransferasa/genética , Hiperbilirrubinemia Neonatal/genética , Mutación
20.
Crit Care ; 25(1): 359, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649600

RESUMEN

BACKGROUND: Examinations based on lung tissue specimen can play a significant role in the diagnosis for critically ill and intubated patients with lung infiltration. However, severe complications including tension pneumothorax and intrabronchial hemorrhage limit the application of needle biopsy. METHODS: A refined needle biopsy technique, named bronchus-blocked ultrasound-guided percutaneous transthoracic needle biopsy (BUS-PTNB), was performed on four intubated patients between August 2020 and April 2021. BUS-PTNB was done at bedside, following an EPUBNOW (evaluation, preparation, ultrasound location, bronchus blocking, needle biopsy, observation, and withdrawal of blocker) workflow. Parameters including procedure feasibility, sample acquisition, perioperative conditions, and complications were observed. Tissue specimens were sent to pathological examinations and microbial tests. RESULTS: Adequate specimens were successfully obtained from four patients. Diagnosis and treatment were correspondingly refined based on pathological and microbial tests. Intrabronchial hemorrhage occurred in patient 1 but was stopped by endobronchial blocker. Mild pneumothorax happened in patient 4 due to little air leakage, and closed thoracic drainage was placed. During the procedure, peripheral capillary hemoglobin oxygen saturation (SPO2), blood pressure, and heart rate of patient 4 fluctuated but recovered quickly. Vital signs were stable for patient 1-3. CONCLUSIONS: BUS-PTNB provides a promising, practical and feasible method in acquiring tissue specimen for critically ill patients under intratracheal intubation. It may facilitate the pathological diagnosis or other tissue-based tests for intubated patients and improve clinical outcomes.


Asunto(s)
Biopsia con Aguja , Bronquios , Biopsia Guiada por Imagen , Enfermedades Pulmonares , Ultrasonografía Intervencional , Biopsia con Aguja/métodos , Bronquios/diagnóstico por imagen , Bronquios/patología , Enfermedad Crítica , Humanos , Intubación Intratraqueal , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...