Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 121(23): 235005, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30576193

RESUMEN

The high-efficiency injection of a low-energy positron beam into the confinement volume of a magnetic dipole has been demonstrated experimentally. This was accomplished by tailoring the three-dimensional guiding-center drift orbits of positrons via optimization of electrostatic potentials applied to electrodes at the edge of the trap, thereby producing localized and essentially lossless cross-field particle transport by means of the E×B drift. The experimental findings are reproduced and elucidated by numerical simulations, enabling a comprehensive understanding of the process. These results answer key questions and establish methods for use in upcoming experiments to create an electron-positron plasma in a levitated dipole device.

2.
Phys Rev Lett ; 121(23): 235003, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30576209

RESUMEN

An ensemble of low-energy positrons injected into a supported magnetic dipole trap can remain trapped for more than a second. Trapping experiments with and without a positive magnet bias yield confinement times up to τ_{A}=(1.5±0.1) and τ_{B}=(0.28±0.04) s, respectively. Supported by single-particle simulations, we conclude that the dominant mechanism limiting the confinement in this trap is scattering off of neutrals, which can lead to both radial transport and parallel losses onto the magnet surface. These results provide encouragement for plans to confine an electron-positron plasma in a levitated dipole trap.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...