Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18812, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138249

RESUMEN

This study utilises computational fluid dynamics simulations with the OpenFOAM computational framework to investigate and compare the in-plane and through-plane permeability properties of four different gas diffusion layers (GDLs). Also the through-plane water and air relative permeability values and water saturations at different rates were simulated. Permeability analysis enhances our understanding of fluid flow, ways to decrease pressure loss in the GDL, and methods to enhance oxygen concentration at the catalyst layer interface through convection. The analysis reveals that the investigated GDL materials have spatial heterogeneity of porosity and permeability, especially in the Sigracet SGL 25 BA GDL. However, the porosity and permeability of the Toray TGP-H 060 and AvCarb 370 MGL GDLs exhibit less variations. The two-phase flow studies on GDL saturation show that at the same water injection flowrate, the AvCarb 370 MGL GDL has the largest remaining water saturation, with Sigracet SGL 25 BA GDL being the less saturated GDL among the four investigated GDLs. The compression from the ribs significantly affected the in-plane permeabilities of both Toray TGP-H 060 and especially impacted Sigracet SGL 25 BA GDL. This impact was expected as the pore size distribution varied significantly in the areas under the ribs versus the channel.

2.
J Phys Chem B ; 128(7): 1780-1795, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38334946

RESUMEN

The structural and dynamic properties of fluids under confinement in a porous medium differ from their bulk properties. This study delves into the surface structuring and hydrodynamic characteristics of oil/thin film carbonated brine two-phase within a calcite channel upon salinity variation. To this end, both equilibrium and non-equilibrium molecular dynamics simulations are utilized to unveil the effect of the carboxylic acid component (benzoic acid) in a simple model oil (decane) confined between two thin films of carbonated brine on the oil-brine-calcite characteristics. The salinity effect was scrutinized under four saline carbonated waters, deionized carbonated water (DCW), carbonated low-salinity brine (CLSB, 30,000 ppm), carbonated seawater (CSW, 60,000 ppm), and carbonated high-salinity brine (CHSB, 180,000 ppm). An electrical double layer (EDL) is observed at varying salinities, comprising a Stern-like positive layer (formed by Na+ ions) followed by a negative one (formed by Cl- ions primarily residing on top of the adsorbed sodium cations). By lowering the salinity, the Na+ ions cover the interface regions (brine-calcite and brine-oil), depleting within the brine bulk region. The lowest positive surface charge on the rock surface was found in salinity corresponding to seawater. Two distinct Na+ peaks at the oleic phase interface have been observed in the carbonated high-salinity brine system, enhancing the adsorption of polar molecules at the thin brine film interfaces. There is a pronounced EDL formation at the oleic phase interface in the case of CSW, resulting in a strong interface region containing ions and functional fractions. Likewise, the oil region confined by CSW exhibited the lowest apparent viscosity, attributed to the optimized salinity distribution and inclination of benzoic acid fractions uniformly at the brine-oil interface, acting as a slippery surface. Moreover, the results reveal that the presence of polar fractions could increase the oil phase's apparent viscosity, and introducing ions to this system reduces the polar molecules' destructive effect on the apparent viscosity of the oil region. Therefore, the fluidity of confined systems is modulated by both composition of the brine and oil phases.

3.
Environ Sci Technol ; 58(6): 2728-2738, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38232385

RESUMEN

Understanding geochemical dissolution in porous materials is crucial, especially in applications such as geological CO2 storage. Accurate estimation of reaction rates enhances predictive modeling in geochemical-flow simulations. Fractured porous media, with distinct transport time scales in fractures and the matrix, raise questions about fracture-matrix interface dissolution rates compared to bulk dissolution rate and the scale-dependency of reaction rate averaging. Our investigation delves into these factors, studying the impact of flow rate and mineralogy on interface dissolution patterns. By injecting carbonated water into carbonate rock samples containing a central channel (mimicking fracture hydrodynamics), our study utilized µCT X-ray imaging at 3.3 µm spatial resolution to estimate the reaction rate and capture the change in pore morphology. Results revealed dissolution rates significantly lower (up to 4 orders of magnitude) than batch experiments. Flow rate notably influenced fracture profiles, causing uneven enlargement at low rates and uniform widening at higher ones. Ankerite presence led to a dissolution-altered layer on the fracture surface, showing high permeability and porosity without greatly affecting the dissolution rate, unlike clay-rich carbonates. This research sheds light on controlling factors influencing dissolution in subsurface environments, critical for accurate modeling in diverse applications.


Asunto(s)
Dióxido de Carbono , Carbonatos , Microtomografía por Rayos X
4.
Sci Total Environ ; 903: 166208, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567307

RESUMEN

The distribution and composition of dissolved organic matter (DOM) affects numerous (bio)geochemical processes in environmental matrices including groundwater. This study reports the spatial and seasonal controls on the distribution of groundwater DOM under the rapidly developing city of Patna, Bihar (India). Major DOM constituents were determined from river and groundwater samples taken in both pre- and post-monsoon seasons in 2019, using excitation-emission matrix (EEM) fluorescence spectroscopy. We compared aqueous fluorescent DOM (fDOM) composition to satellite-derived land use data across the field area, testing the hypothesis that the composition of groundwater DOM, and particularly the components associated with surface-derived ingress, may be controlled, in part, by land use. In the pre-monsoon season, the prominence of tryptophan-like components likely generated from recent biological activity overwhelmed the humic-like and tyrosine-like fluorescence signals. Evidence from fluorescence data suggest groundwater in the post-monsoon season is composed of predominantly i) plant-derived matter and ii) anthropogenically influenced DOM (e.g. tryptophan-like components). Organic tracers, as well as Eh and Cl-, suggest monsoonal events mobilise surface-derived material from the unsaturated zone, causing dissolved organic carbon (DOC) of more microbial nature to infiltrate to >100 m depth. A correlation between higher protein:humic-like fluorescence and lower vegetation index (NDVI), determined from satellite-based land use data, in the post-monsoon season, indicates the ingression of wastewater-derived OM in groundwater under the urban area. Attenuated protein:humic-like fluorescence in groundwater close to the river points towards the mixing of groundwater and river water. This ingress of surface-derived OM is plausibly exacerbated by intensive groundwater pumping under these areas. Our approach to link the composition of aqueous organics with land use could easily be adapted for similar hydrogeochemical settings to determine the factors controlling groundwater DOM composition in various contexts.

5.
Langmuir ; 39(36): 12680-12691, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650690

RESUMEN

Hydrogen (H2) underground storage has attracted considerable attention as a potentially efficient strategy for the large-scale storage of H2. Nevertheless, successful execution and long-term storage and withdrawal of H2 necessitate a thorough understanding of the physical and chemical properties of H2 in contact with the resident fluids. As capillary forces control H2 migration and trapping in a subsurface environment, quantifying the interfacial tension (IFT) between H2 and the resident fluids in the subsurface is important. In this study, molecular dynamics (MD) simulation was employed to develop a data set for the IFT of H2-brine systems under a wide range of thermodynamic conditions (298-373 K temperatures and 1-30 MPa pressures) and NaCl salinities (0-5.02 mol·kg-1). For the first time to our knowledge, a comprehensive assessment was carried out to introduce the most accurate force field combination for H2-brine systems in predicting interfacial properties with an absolute relative deviation (ARD) of less than 3% compared with the experimental data. In addition, the effect of the cation type was investigated for brines containing NaCl, KCl, CaCl2, and MgCl2. Our results show that H2-brine IFT decreases with increasing temperature under any pressure condition, while higher NaCl salinity increases the IFT. A slight decrease in IFT occurs when the pressure increases. Under the impact of cation type, Ca2+ can increase IFT values more than others, i.e., up to 12% with respect to KCl. In the last step, the predicted IFT data set was used to provide a reliable correlation using machine learning (ML). Three white-box ML approaches of the group method of data handling (GMDH), gene expression programming (GEP), and genetic programming (GP) were applied. GP demonstrates the most accurate correlation with a coefficient of determination (R2) and absolute average relative deviation (AARD) of 0.9783 and 0.9767%, respectively.

6.
Nat Commun ; 13(1): 6471, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309491

RESUMEN

Sub-Saharan Africa must urgently improve food security. Phosphorus availability is one of the major barriers to this due to low historical agricultural use. Shared socioeconomic pathways (SSPs) indicate that only a sustainable (SSP1) or a fossil fuelled future (SSP5) can improve food security (in terms of price, availability, and risk of hunger) whilst nationalistic (SSP3) and unequal (SSP4) pathways worsen food security. Furthermore, sustainable SSP1 requires limited cropland expansion and low phosphorus use whilst the nationalistic SSP3 is as environmentally damaging as the fossil fuelled pathway. The middle of the road future (SSP2) maintains today's inadequate food security levels only by using approximately 440 million tonnes of phosphate rock. Whilst this is within the current global reserve estimates the market price alone for a commonly used fertiliser (DAP) would cost US$ 130 ± 25 billion for agriculture over the period 2020 to 2050 and the farmgate price could be two to five times higher due to additional costs (e.g. transport, taxation etc.). Thus, to improve food security, economic growth within a sustainability context (SSP1) and the avoidance of nationalist ideology (SSP3) should be prioritised.


Asunto(s)
Agricultura , Fósforo , África del Sur del Sahara , Fertilizantes , Seguridad Alimentaria , Abastecimiento de Alimentos
7.
Phys Rev E ; 106(1-2): 015103, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35974600

RESUMEN

Control over dispersion of nanoparticles in polymer solutions through porous media is important for subsurface applications such as soil remediation and enhanced oil recovery. Dispersion is affected by the spatial heterogeneity of porous media, the non-Newtonian behavior of polymer solutions, and the Brownian motion of nanoparticles. Here, we use the Euler-Lagrangian method to simulate the flow of nanoparticles and inelastic non-Newtonian fluids (described by Meter model) in a range of porous media samples and injection rates. In one case, we use a fine mesh of more than 3 million mesh points to model nanoparticles transport in a sandstone sample. The results show that the velocity distribution of nanoparticles in the porous medium is non-Gaussian, which leads to the non-Fickian behavior of nanoparticles dispersion. Due to pore-space confinement, the long-time mean-square displacement of nanoparticles depends nonlinearly on time. Additionally, the gradient of shear stress in the pore space of the porous medium dictates the transport behavior of nanoparticles in the porous medium. Furthermore, the Brownian motion of nanoparticles increases the dispersion of nanoparticles along the longitudinal and transverse direction.

8.
J Contam Hydrol ; 249: 104043, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35767908

RESUMEN

Groundwater security is a pressing environmental and societal issue, particularly due to significantly increasing stressors on water resources, including rapid urbanization and climate change. Groundwater arsenic is a major water security and public health challenge impacting millions of people in the Gangetic Basin of India and elsewhere globally. In the rapidly developing city of Patna (Bihar) in northern India, we have studied the evolution of groundwater chemistry under the city following a three-dimensional sampling framework of multi-depth wells spanning the central urban zone in close proximity to the River Ganges (Ganga) and transition into peri-urban and rural areas outside city boundaries and further away from the river. Using inorganic geochemical tracers (including arsenic, iron, manganese, nitrate, nitrite, ammonium, sulfate, sulfide and others) and residence time indicators (CFCs and SF6), we have evaluated the dominant hydrogeochemical processes occurring and spatial patterns in redox conditions across the study area. The distribution of arsenic and other redox-sensitive parameters is spatially heterogenous, and elevated arsenic in some locations is consistent with arsenic mobilization via reductive dissolution of iron hydroxides. Residence time indicators evidence modern (<~60-70 years) groundwater and suggest important vertical and lateral flow controls across the study area, including an apparent seasonal reversal in flow regimes near the urban center. An overall arsenic accumulation rate is estimated to be ~0.003 ± 0.003 µM.yr-1 (equivalent to ~0.3 ± 0.2 µg.yr-1), based on an average of CFC-11, CFC-12 and SF6-derived models, with the highest rates of arsenic accumulation observed in shallow, near-river groundwaters also exhibiting elevated concentrations of nutrients including ammonium. Our findings have implications on groundwater management in Patna and other rapidly developing cities, including potential future increased groundwater vulnerability associated with surface-derived ingress from large-scale urban abstraction or in higher permeability zones of river-groundwater connectivity.


Asunto(s)
Compuestos de Amonio , Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Monitoreo del Ambiente , Humanos , India , Hierro/análisis , Contaminantes Químicos del Agua/análisis
9.
Sci Adv ; 7(52): eabj0960, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34936457

RESUMEN

Experimental and field studies reported a significant discrepancy between the cleanup and contamination time scales, while its cause is not yet addressed. Using high-resolution fast synchrotron x-ray computed tomography, we characterized the solute transport in a fully saturated sand packing for both contamination and cleanup processes at similar hydrodynamic conditions. The discrepancy in the time scales has been demonstrated by the nonuniqueness of hydrodynamic dispersion coefficient versus injection rate (Péclet number). Observations show that in the mixed advection-diffusion regime, the hydrodynamic dispersion coefficient of cleanup is significantly larger than that of the contamination process. This nonuniqueness has been attributed to the concentration-dependent diffusion coefficient during the cocurrent and countercurrent advection and diffusion, present in contamination and cleanup processes. The new findings enhance our fundamental understanding of transport processes and improve our capability to estimate the transport time scales of chemicals or pollution in geological and engineering systems.

10.
ACS Appl Energy Mater ; 4(10): 10514-10533, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34723137

RESUMEN

Operation of proton-exchange membrane fuel cells is highly deteriorated by mass transfer loss, which is a result of spatial and temporal interaction between airflow, water flow, channel geometry, and its wettability. Prediction of two-phase flow dynamics in gas channels is essential for the optimization of the design and operating of fuel cells. We propose a mechanistic discrete particle model (DPM) to delineate dynamic water distribution in fuel cell gas channels and optimize the operating conditions. Similar to the experimental observations, the model predicts seven types of flow regimes from isolated, side wall, corner, slug, film, and plug flow droplets for industrial temporal and spatial scales. Consequently, two-phase flow regime maps are proposed. The results suggest that an increase in water accumulation in the channel is related to the increase in the water cluster density emerging from the gas diffusion layer rather than the increased water flow rate through constant water pathways. From a modeling perspective, the DPM replicated well volume-of-fluid channel simulation results in terms of saturation, water coverage ratio, and interface locations with an estimated 5 orders of magnitude increase in calculation speed.

11.
J Contam Hydrol ; 243: 103886, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34507216

RESUMEN

Co-solvent flushing into contaminated soils is one of the most effective techniques for Dense Non-Aqueous Phase Liquid (DNAPL) remediation. In addition to the increase of DNAPL solubility, co-solvents (e.g. ethanol) can alter the viscosity and density of aqueous phase and diffusion coefficient of solute. Any changes in these parameters can change the flow behaviour and alter the upscaled DNAPL mass transfer coefficient which is a key parameter controlling soil and groundwater remediation at Darcy-scale. While numerous studies have investigated DNAPL remediation using co-solvents at the Darcy scale, pore-scale modelling of co-solvent enhanced DNAPL remediation has not been well investigated. In this work, a three-dimensional pore-network model was developed to simulate the 1,2-dichlorobenzene (DCB) remediation experiments using ethanol-water flushing solution. The model simulates the effect of changes in solubility, viscosity, density, and diffusion coefficient during co-solvent flushing of the DNAPL. The results of pore network modelling for ethanol-water flushing for the DCB remediation were also validated using the experimental data. In addition to pore-scale modelling, a continuum scale modelling (Darcy-scale) was used for the DCB remediation using ethanol-water flushing. The results of both pore network and continuum scale modelling demonstrated that the ethanol content and flushing velocity influence the interphase mass transfer and DNAPL dissolution process. The results indicated while the mass transfer coefficient decreased in the presence of ethanol, the process of NAPL remediation was improved due to the substantial increase of solubility in the presence of co-solvent. The large scale modelling showed that NAPL bank can be formed in the front of ethanol-water mixture flushing.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Contaminantes del Agua , Etanol , Solubilidad , Contaminantes del Agua/análisis , Contaminantes Químicos del Agua/análisis
12.
ACS Appl Mater Interfaces ; 13(29): 34003-34011, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34235914

RESUMEN

Extending the operating range of fuel cells to higher current densities is limited by the ability of the cell to remove the water produced by the electrochemical reaction, avoiding flooding of the gas diffusion layers. It is therefore of great interest to understand the complex and dynamic mechanisms of water cluster formation in an operando fuel cell setting as this can elucidate necessary changes to the gas diffusion layer properties with the goal of minimizing the number, size, and instability of the water clusters formed. In this study, we investigate the cluster formation process using X-ray tomographic microscopy at 1 Hz frequency combined with interfacial curvature analysis and volume-of-fluid simulations to assess the pressure evolution in the water phase. This made it possible to observe the increase in capillary pressure when the advancing water front had to overcome a throat between two neighboring pores and the nuanced interactions of volume and pressure evolution during the droplet formation and its feeding path instability. A 2 kPa higher breakthrough pressure compared to static ex situ capillary pressure versus saturation evaluations was observed, which suggests a rethinking of the dynamic liquid water invasion process in polymer electrolyte fuel cell gas diffusion layers.

13.
ACS Appl Mater Interfaces ; 13(4): 5731-5740, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33494600

RESUMEN

Fluid-fluid interfacial reactions in porous materials are pertinent to many engineering applications such as fuel cells, catalyst design, subsurface energy recovery (enhanced oil recovery), and CO2 storage. They have been identified to control physicochemical properties such as interfacial rheology, multiphase flow, and reaction kinetics. In recent years, engineered waterflooding has been identified as an effective way to increase hydrocarbon recovery and solid-fluid interaction has been assessed as the key mechanism. However, in this study, we demonstrated that in the absence of solid-fluid interactions (in strong hydrophilic porous media), fluid-fluid interfacial reactions can significantly affect multiphase flow and thus lead to an increased hydrocarbon recovery during engineered carbonated waterflooding. We designed a microwaterflooding system to evaluate the interfacial reactions during two phase flow with engineered carbonated waters. Given that salinity controls the amount of dissolved CO2, we injected carbonated high salinity water and carbonated low salinity water to achieve different fluid-fluid reactions. We injected the carbonated water in a sandstone with 99.5% quartz under X-ray microcomputed tomography (µCT) scanning at a resolution of 3.43 µm per pixel. Image processing shows that carbonated low salinity waterflooding can recover 8% more oil than carbonated high salinity waterflooding, while the quartz-rich sandstone remains strongly hydrophilic in both samples. A gradual CT intensity distribution indicates an interfacial phase generation between carbonated brine and crude oil during carbonated waterflooding. Therefore, we attributed the additional hydrocarbon recoveries to the fluid-fluid interfacial reactions. To understand the effects of fluid-fluid reactions on interfacial properties, we performed molecular dynamics simulations to investigate the chemical species distribution at the interface, interfacial tension (IFT) changes, and CO2 diffusion. The MD simulation results revealed a layered structure of the interface, a lower CO2 diffusion coefficient in carbonated high salinity water, a lower IFT in carbonated low salinity water, a swelling hydrocarbon phase in carbonated low salinity water, and more CO2 accumulated at the interface between the hydrocarbon phase and carbonated low salinity water. This work provides a general and fundamental understanding of the influence of fluid-fluid interactions on the interfacial properties between carbonated water and the hydrocarbon interface.

14.
Proc Natl Acad Sci U S A ; 117(38): 23443-23449, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900944

RESUMEN

Solute transport in unsaturated porous materials is a complex process, which exhibits some distinct features differentiating it from transport under saturated conditions. These features emerge mostly due to the different transport time scales at different regions of the flow network, which can be classified into flowing and stagnant regions, predominantly controlled by advection and diffusion, respectively. Under unsaturated conditions, the solute breakthrough curves show early arrivals and very long tails, and this type of transport is usually referred to as non-Fickian. This study directly characterizes transport through an unsaturated porous medium in three spatial dimensions at the resolution of 3.25 µm and the time resolution of 6 s. Using advanced high-speed, high-spatial resolution, synchrotron-based X-ray computed microtomography (sCT) we obtained detailed information on solute transport through a glass bead packing at different saturations. A large experimental dataset (>50 TB) was produced, while imaging the evolution of the solute concentration with time at any given point within the field of view. We show that the fluids' topology has a critical signature on the non-Fickian transport, which yet needs to be included in the Darcy-scale solute transport models. The three-dimensional (3D) results show that the fully mixing assumption at the pore scale is not valid, and even after injection of several pore volumes the concentration field at the pore scale is not uniform. Additionally, results demonstrate that dispersivity is changing with saturation, being twofold larger at the saturation of 0.52 compared to that at the fully saturated domain.

15.
J Colloid Interface Sci ; 561: 162-172, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812862

RESUMEN

Electrokinetic effects in porous media play a key role in a number of natural and industrial processes. Applications such as enhanced oil recovery, soil remediation and even drug delivery are affected by the Coulombic forces created by the solid-fluid interfacial interactions. These electrokinetic effects promote the development of non-homogenous slipping flow over charged surfaces at the pore scale, which can have a significant impact in the hydrodynamics of tight porous materials. For transport of ionic solutions in such systems (e.g. transport of low salinity water in tight oil reservoirs), combined effect of hydrodynamic transport and electrokinetic transport would be expected. While transport in pressure-driven transport will be pronounced in high permeability flow pathways, transport due to electric fields (e.g. electro-osmosis) will be more pronounced in tight pores were electrical diffuse layer is not negligible. In this work, we explored the pore-scale hydrodynamic characteristics of charged porous media using computational fluid dynamics. Different flow driving mechanisms were studied, e.g. conventional pressure driven flow, pure electro-osmosis as well as their superposition under different amounts of charged material. We then analyzed the effect of these distinct flow regimes on the transport of a passive tracer, finding how different driving mechanism result in distinct dispersion and mixing characteristics.

16.
Sci Rep ; 9(1): 9257, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239462

RESUMEN

Low salinity waterflooding has proven to accelerate oil production at core and field scales. Wettability alteration from a more oil-wetting to a more water-wetting condition has been established as one of the most notable effects of low salinity waterflooding. To induce the wettability alteration, low salinity water should be transported to come in contact with the oil-water interfaces. Transport under two-phase flow conditions can be highly influenced by fluids topology that creates connected pathways as well as dead-end regions. It is known that under two-phase flow conditions, the pore space filled by a fluid can be split into flowing (connected pathways) and stagnant (deadend) regions due to fluids topology. Transport in flowing regions is advection controlled and transport in stagnant regions is predominantly diffusion controlled. To understand the full picture of wettability alteration of a rock by injection of low salinity water, it is important to know i) how the injected low salinity water displaces and mixes with the high salinity water, ii) how continuous wettability alteration impacts the redistribution of two immiscible fluids and (ii) role of hydrodynamic transport and mixing between the low salinity water and the formation brine (high salinity water) in wettability alteration. To address these two issues, computational fluid dynamic simulations of coupled dynamic two-phase flow, hydrodynamic transport and wettability alteration in a 2D domain were carried out using the volume of fluid method. The numerical simulations show that when low salinity water was injected, the formation brine (high salinity water) was swept out from the flowing regions by advection. However, the formation brine residing in stagnant regions was diffused very slowly to the low salinity water. The presence of formation brine in stagnant regions created heterogeneous wettability conditions at the pore scale, which led to remarkable two-phase flow dynamics and internal redistribution of oil, which is referred to as the "pull-push" behaviour and has not been addressed before in the literature. Our simulation results imply that the presence of stagnant regions in the tertiary oil recovery impedes the potential of wettability alteration for additional oil recovery. Hence, it would be favorable to inject low salinity water from the beginning of waterflooding to avoid stagnant saturation. We also observed that oil ganglia size was reduced under tertiary mode of low salinity waterflooding compared to the high salinity waterflooding.

17.
Sci Rep ; 7(1): 6624, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747787

RESUMEN

There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.

18.
Sci Rep ; 7(1): 4584, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676665

RESUMEN

Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-wet conditions is less understood. This study reports the results of a series of two-dimensional high-resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence of concave and convex interfaces. Intermediate wettability leads to various interfacial movements which are not identified under imbibition or drainage conditions. These pore-scale events significantly influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending fluid from weak imbibition to intermediate-wet conditions.

19.
J Colloid Interface Sci ; 473: 34-43, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27042823

RESUMEN

Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors.

20.
Environ Sci Technol ; 50(8): 4384-92, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27010555

RESUMEN

Using a visualization setup, we characterized the solute transport in a micromodel filled with two fluid phases using direct, real-time imaging. By processing the time series of images of solute transport (dispersion) in a two fluid-phase filled micromodel, we directly delineated the change of transport hydrodynamics as a result of fluid-phase occupancy. We found that, in the water saturation range of 0.6-0.8, the macroscopic dispersion coefficient reaches its maximum value and the coefficient was 1 order of magnitude larger than that in single fluid-phase flow in the same micromodel. The experimental results indicate that this non-monotonic, non-Fickian transport is saturation- and flow-rate-dependent. Using real-time visualization of the resident concentration (averaged concentration over a representative elementary volume of the pore network), we directly estimated the hydrodynamically stagnant (immobile) zones and the mass transfer between mobile and immobile zones. We identified (a) the nonlinear contribution of the immobile zones to the non-Fickian transport under transient transport conditions and (b) the non-monotonic fate of immobile zones with respect to saturation under single and two fluid-phase conditions in a micromodel. These two findings highlight the serious flaws in the assumptions of the conventional mobile-immobile model (MIM), which is commonly used to characterize the transport under two fluid-phase conditions.


Asunto(s)
Agua Subterránea , Hidrología/métodos , Modelos Teóricos , Dimetilpolisiloxanos/análisis , Fluorocarburos/análisis , Hidrodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA