Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 65(7): 075009, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32028270

RESUMEN

We present an automatic bi-objective parameter-tuning approach for inverse planning methods for high-dose-rate prostate brachytherapy, which aims to overcome the difficult and time-consuming manual parameter tuning that is currently required to obtain patient-specific high-quality treatment plans. We modelled treatment planning as a bi-objective optimization problem, in which dose-volume-based planning criteria related to target coverage are explicitly separated from organ-sparing criteria. When this model is optimized, a large set of high-quality plans with different trade-offs can be obtained. This set can be visualized as an insightful patient-specific trade-off curve. In our parameter-tuning approach, the parameters of inverse planning methods are automatically tuned, aimed to maximize the two objectives of the bi-objective planning model. By generating trade-off curves for different inverse planning methods, their maximally achievable plan quality can be insightfully compared. Automatic parameter tuning furthermore allows to construct standard parameter sets (class solutions) representing different trade-offs in a principled way, which can be directly used in current clinical practice. In this work, we considered the inverse planning methods IPSA and HIPO. Thirty-nine previously treated prostate cancer patients were included. We compared automatic parameter tuning, random parameter sampling, and the maximally achievable plan quality obtained by directly optimizing the bi-objective planning model with the state-of-the-art optimization software GOMEA. We showed that for each patient, a set of plans with a wide range of trade-offs could be obtained using automatic parameter tuning for both IPSA and HIPO. By tuning HIPO, better trade-offs were obtained than by tuning IPSA. For most patients, automatic tuning of HIPO resulted in plans close to the maximally achievable plan quality obtained by optimizing the bi-objective planning model directly. Automatic parameter tuning was shown to improve plan quality significantly compared to random parameter sampling. Finally, from the automatically-tuned plans, three class solutions were successfully constructed representing different trade-offs.


Asunto(s)
Braquiterapia/métodos , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Proyectos de Investigación , Programas Informáticos , Algoritmos , Humanos , Masculino , Dosificación Radioterapéutica
2.
Phys Med Biol ; 63(8): 085015, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29521280

RESUMEN

As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1 × 1 and 57 × 22 cm2. New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of 1.2 ± 0.1 cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of +0.24 cm. For a 10 × 10 cm2 beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%-80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm) = 57%. The entrance surface dose is ∼36% of Dmax. Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017 (Raaymakers et al 2017 Phys. Med. Biol. 62 L41-50).


Asunto(s)
Imagen por Resonancia Magnética/métodos , Aceleradores de Partículas , Fantasmas de Imagen , Radiometría/métodos , Electrones , Humanos , Campos Magnéticos , Posicionamiento del Paciente , Agua
3.
Med Phys ; 43(4): 1639, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27036563

RESUMEN

PURPOSE: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a (192)Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. METHODS: The penelope2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a (192)Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth-dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. RESULTS: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. CONCLUSIONS: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.


Asunto(s)
Braquiterapia/instrumentación , Dosis de Radiación , Enfermedades de la Piel/radioterapia , Diseño de Equipo , Humanos , Radioisótopos de Iridio/uso terapéutico , Método de Montecarlo , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Agua
5.
Med Phys ; 42(8): 4954-64, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26233221

RESUMEN

PURPOSE: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. METHODS: The surface dose rate of the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. RESULTS: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%-2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers, differ by less than 1.1% for any applicator size when compared to the output factors that were measured with the A20 chamber. CONCLUSIONS: Measurements using both dosimetric protocols are consistent, once the overall uncertainties are considered. There is also consistency between measurements performed with both chambers calibrated in air. Both the T34013 and A20 chambers have negligible stem effect. Any x-ray surface brachytherapy system, including Esteya, can be characterized using either one of these calibration protocols and ionization chambers. Having less correction factors, lower uncertainty, and based on measurements, performed in closer to clinical conditions, the TRS-398 protocol seems to be the preferred option.


Asunto(s)
Braquiterapia/instrumentación , Braquiterapia/métodos , Radiometría/instrumentación , Radiometría/métodos , Calibración , Fantasmas de Imagen , Fotones , Incertidumbre , Agua , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA