Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e15032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073276

RESUMEN

Dietary ingestion is the main route of exposure to hazardous contaminants in land animals. Cadmium, a high-profile toxic metal, affects living systems at different organismal levels, including major storage organs (liver, kidneys), key organs for species survival (gonads), and epigenetic networks regulating gene expression. 5-methylcytosine (5mC) is the most common and best-characterized epigenetic mark among different modified nucleosides in DNA. This important player in methylation-driven gene expression is impacted by cadmium in sentinel terrestrial vertebrates. However, limited information exists regarding its impact on macroinvertebrates, especially land snails commonly used as (eco)toxicological models. We first investigate the methylomic effects of dietary cadmium given as cadmium nitrate on terrestrial mollusks. Mature specimens of the common brown garden snail, Cornu aspersum, were continuously exposed for four weeks to environmentally-relevant cadmium levels. We determined global genomic DNA methylation in hepatopancreas and ovotestis, as well as changes in the methylation status of CG pairs at the 5' region close to the transcription site of gene encoding the Cd-selective metallothionein (Cd-MT). Weight gain/loss, hypometabolism tendency, and survival rates were also assessed. Although this exposure event did not adversely affect survival, gastropods exposed to the highest Cd dose revealed a significant reduction in body weight and a significant increase in hypometabolic behavior. The hepatopancreas, but not the ovotestis, displayed significant hypermethylation, but only for the aforementioned specimens. We also found that the 5' end of the Cd-MT gene was unmethylated in both organs and its methylation status was insensitive to cadmium exposure. Our results are important since they provide scientists, for the first time, with quantitative data on DNA methylation in gastropod ovotestis and refine our understanding of Cd epigenetic effects on terrestrial mollusks.


Asunto(s)
Compuestos de Cadmio , Cadmio , Animales , Cadmio/toxicidad , Metilación de ADN , Hepatopáncreas , Compuestos de Cadmio/metabolismo
2.
J Int Med Res ; 50(7): 3000605221109389, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35818159

RESUMEN

OBJECTIVES: To analyse: (1) the associations between different mannose-binding lectin 2 (MBL2) genotypes and susceptibility to bronchial asthma (BA) in Romanian children; and (2) the correlations between several patient sociodemographic variables and MBL2 polymorphisms. METHODS: This prospective observational case-control study included paediatric patients with symptomatic BA and healthy controls. Participants were genotyped for two MBL2 single-nucleotide polymorphisms (SNPs): exon 1 codon 54 A/B variant rs1800450, and -550 promoter H/L variant rs11003125 (GenBank accession). Associations between MBL2 genotypes and susceptibility to BA were determined by calculated odds ratios, and Kendall Tau's correlations were used to investigate the associations between sociodemographic variables and SNPs. RESULTS: Among 59 patients with BA and 65 healthy controls, associations between MBL2 polymorphisms and susceptibility to BA were not found to be statistically significant. Statistically significant weak positive correlations were found between age at diagnosis and A/B genotype, and between the smoking status of biologically male and female parents. A statistically significant weak inverse association was found between male parent smoking status and family history of BA. CONCLUSION: These results may help guide future research into paediatric BA in Romania and Eastern Europe. Due to study limitations, the results require validation in future large-scale studies.


Asunto(s)
Asma , Lectina de Unión a Manosa , Asma/epidemiología , Asma/genética , Estudios de Casos y Controles , Niño , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Lectina de Unión a Manosa/genética , Polimorfismo de Nucleótido Simple/genética , Rumanía/epidemiología
3.
Beilstein J Nanotechnol ; 11: 1092-1109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802712

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) have unique properties with regard to biological and medical applications. SPIONs have been used in clinical settings although their safety of use remains unclear due to the great differences in their structure and in intra- and inter-patient absorption and response. This review addresses potential applications of SPIONs in vitro (formulations), ex vivo (in biological cells and tissues) and in vivo (preclinical animal models), as well as potential biomedical applications in the context of drug targeting, disease treatment and therapeutic efficacy, and safety studies.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32709133

RESUMEN

In this study, we conducted a noncarcinogenic risk assessment of consuming vegetables and fruits grown in two old mining areas from the Banat area of Southern Carpathians (Romania), Moldova Veche (M) and Rusca Montana (R) and in a nonpolluted reference area located near the village of Borlova (Ref). Concentrations of Fe, Mn, Zn, Cu, Ni, Cd and Pb in soils and commonly eaten vegetables and fruits were measured and used for calculating the weighted estimated daily intake of metals (WEDIM), the target hazard quotients (THQ) and the total target hazard quotients (TTHQ) for normal daily consumption in adults. Levels of certain metals in soils and plants from the R area (Pb) and the M area (Cu) were higher than those measured in the Ref area-and often exceeded normal or even alert-threshold levels. TTHQs for the R area (1.60; 6.03) and the M area (1.11; 2.54) were above one for leafy vegetables and root vegetables, respectively, suggesting a major risk of adverse health effects for diets, including these vegetal foodstuffs. Moreover, THQ and TTHQ indicated a higher population health risk for the R area than for the M area, with the Ref area being a safe zone.


Asunto(s)
Contaminación de Alimentos , Frutas , Metales Pesados , Medición de Riesgo , Verduras , China , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Frutas/química , Metales Pesados/análisis , Metales Pesados/toxicidad , Montana , Rumanía , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Verduras/química
5.
Environ Toxicol Pharmacol ; 72: 103243, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31445455

RESUMEN

There is currently limited scientific evidence linking soil copper and land snails, although these invertebrates are important players in terrestrial ecosystems. In the present study, Cantareus aspersus juveniles, were exposed in two successive phases of 30 days each, to soil spiked with increasing concentrations of copper sulfate. Copper concentrated preferentially and in a dose-dependent manner in the hepatopancreas. In the case of specimens previously exposed to Cu-spiked soils, Cu retention kinetics were independent from the effects of a new exposure event. There was no effect on shell growth, but significant mortality was observed at 60 days. The no observed effect concentration and the lowest observed effect concentration for mortality in snails, were ˜ 41 and 54 mg, respectively, per grams dry weight in the hepatopancreas. The results demonstrate, for the first time, that terrestrial gastropods can accumulate soil Cu autonomously from dietary uptake.


Asunto(s)
Cobre/farmacocinética , Caracoles/metabolismo , Contaminantes del Suelo/farmacocinética , Animales , Cobre/toxicidad , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Caracoles/efectos de los fármacos , Contaminantes del Suelo/toxicidad
6.
Environ Toxicol Pharmacol ; 65: 9-13, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30468972

RESUMEN

The available information on the interplay between low-dose cadmium intake and copper, manganese, and iron homeostasis in invertebrates is limited. We have currently studied the accumulation of these trace metals in the hepatopancreas of adult snails, Cantareus aspersus, following 14 and 28 days of exposure to low doses of dietary cadmium, up to 1 mg/kg dw (dry weight). The cadmium dose, but not the duration of exposure, had a significant effect on hepatopancreas copper deposition, the values being significantly elevated compared to controls. A significant peak in manganese levels at 14 days was found in snails administered the lowest cadmium dose. These increases occurred even in the absence of cadmium increase in the hepatopancreas. Our data suggest that low dose cadmium feeding can produce a transient disturbance in hepatopancreas copper and manganese homeostasis. Such responses may serve as early biomarkers of physiological changes occurring during the initial stages of cadmium intoxication.


Asunto(s)
Metales Pesados/metabolismo , Metales Pesados/toxicidad , Caracoles/efectos de los fármacos , Animales , Dieta , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Homeostasis/efectos de los fármacos , Caracoles/metabolismo
7.
Int J Mol Sci ; 18(11)2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29156615

RESUMEN

This is the first study investigating the clinical relevance of 5-hydroxymethylcytosine (5hmC) in genomic DNA from white blood cells (WBC) in the context of prostate cancer (PCa) and other prostate pathologies. Using an enzyme-linked immunosorbent assay, we identified significantly different distributions of patients with low and elevated 5hmC content in WBC DNA across controls and patients with prostate cancer (PCa), atypical small acinar proliferation (ASAP), and benign prostatic hyperplasia (BPH). The measured values were within the normal range for most PCa patients, while the latter category was predominant for ASAP. We observed a wider heterogeneity in 5hmC content in all of the prostate pathologies analyzed when compared to the healthy age-matched controls. When compared to blood levels of prostate-specific antigen (PSA), this 5hmC-based biomarker had a lower performance in PCa detection than the use of a PSA cut-off of 2.5 nanograms per milliliter (ng/mL). Above this threshold, however, it delineated almost three quarters of PCa patients from controls and patients with other prostate pathologies. Overall, genome-wide 5hmC content of WBC DNA appears to be applicable for detecting non-cancerous prostate diseases, rather than PCa. Our results also suggest a potential clinical usefulness of complementing PSA as a PCa marker by the addition of a set of hydroxymethylation markers in the blood, but further studies are necessary to confirm these findings.


Asunto(s)
Biomarcadores de Tumor/sangre , Metilación de ADN/genética , ADN de Neoplasias/sangre , Neoplasias de la Próstata/sangre , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/sangre , Anciano , ADN de Neoplasias/genética , Epigénesis Genética , Humanos , Leucocitos/patología , Masculino , Persona de Mediana Edad , Antígeno Prostático Específico/sangre , Hiperplasia Prostática/sangre , Hiperplasia Prostática/genética , Hiperplasia Prostática/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
8.
PLoS One ; 12(9): e0184221, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28877233

RESUMEN

5-methylcytosine (5mC) is a key epigenetic mark which influences gene expression and phenotype. In vertebrates, this epigenetic mark is sensitive to Cd exposure, but there is no information linking such an event with changes in global 5mC levels in terrestrial gastropods despite their importance as excellentecotoxicological bioindicators of metal contamination. Therefore, we first evaluated total 5mC content in DNA of the hepatopancreas of adult Cantareus aspersus with the aim to determine whether this epigenetic mark is responsive to Cd exposure. The experiment was conducted under laboratory conditions and involved a continuous exposure, multiple dose- and time-point (14, 28, and 56 days) study design. Hepatopancreas cadmium levels were measured using Flame Atomic Absorption Spectrometry and the percentage of 5-mC in samples using an ELISA-based colorimetric assay. Snail death rates were also assessed. Our results, for the first time, reveal the presence of 5mC in C. aspersus and provide evidence for Cd-induced changes in global 5mC levels in DNA of gastropods and mollusks. Although less sensitive than tissue accumulation, DNA methylation levels responded in a dose- and time-dependent manner to dietary cadmium, with exposure dose having a much stronger effect than exposure duration. An obvious trend of increasing 5mC levels was observed starting at 28 days of exposure to the second highest dose and this trend persisted at the two highest treatments for close to one month, when the experiment was terminated after 56 days. Moreover, a strong association was identified between Cd concentrations in the hepatopancreas and DNA methylation levels in this organ. These data indicate an overall trend towards DNA hypermethylation with elevated Cd exposure. No consistent lethal effect was observed, irrespective of time point and Cd-dosage. Overall, our findings suggest that the total 5mC content in DNA of the hepatopancreas of land snails is responsive to sublethal Cd exposure and give new insights into invertebrate environmental epigenetics.


Asunto(s)
Cadmio/toxicidad , Metilación de ADN/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Caracoles/efectos de los fármacos , Animales , Dieta/efectos adversos , Hepatopáncreas/metabolismo , Caracoles/metabolismo
9.
Environ Sci Pollut Res Int ; 24(17): 15187-15195, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28497329

RESUMEN

5-Hydroxymethylcytosine (5hmC) is an important, yet poorly understood epigenetic DNA modification, especially in invertebrates. Aberrant genome-wide 5hmC levels have been associated with cadmium (Cd) exposure in humans, but such information is lacking for invertebrate bioindicators. Here, we aimed to determine whether this epigenetic mark is present in DNA of the hepatopancreas of the land snail Cantareus aspersus and is responsive to Cd exposure. Adult snails were reared under laboratory conditions and exposed to graded amounts of dietary cadmium for 14 days. Weight gain was used as a sublethal endpoint, whereas survival as a lethal endpoint. Our results are the first to provide evidence for the presence of 5hmC in DNA of terrestrial mollusks; 5hmC levels are generally low with the measured values falling below 0.03%. This is also the first study to investigate the interplay of Cd with DNA hydroxymethylation levels in a non-human animal study system. Cadmium retention in the hepatopancreas of C. aspersus increased from a dietary Cd dose of 1 milligram per kilogram dry weight (mg/kg d. wt). For the same treatment, we identified the only significant elevation in percentage of samples with detectable 5hmC levels despite the lack of significant mortalities and changes in weight gain among treatment groups. These findings indicate that 5hmC is an epigenetic mark that may be responsive to Cd exposure, thereby opening a new aspect to invertebrate environmental epigenetics.


Asunto(s)
Cadmio/toxicidad , Caracoles , Contaminantes Químicos del Agua/toxicidad , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Citosina , Hepatopáncreas , Humanos
10.
Data Brief ; 7: 1199-203, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27408922

RESUMEN

Here we present additional data on the expression of lipoxygenases -5 and -12 in the normal and acetaminophen-damaged liver, which are associated with our manuscript recently published in Chemico-Biological Interactions on lipid metabolism and eicosanoid signaling pathways involved in acetaminophen-induced liver damage in a mouse model (http://dx.doi.org/10.1016/j.cbi.2015.10.019 [1]). It has been demonstrated that the expression of lipoxygenase-5 and leukotriene formation are increased in the livers of rats with carbon tetrachloride (CCl4)-induced cirrhosis (http://dx.doi.org/10.1053/gast.2000.17831 [2]). In addition, the lipoxygenase-12 is known to be expressed in the resident macrophage population of the liver (http://dx.doi.org/10.1016/S0014-5793(99)00396-8 [3]). Mice were injected with acetaminophen, and at 48 h their livers were processed for immunohistochemistry with anti-mouse lipoxygenase-5 and -12 antibodies. At the same time point, the RNA was also extracted from the liver to assess the expression of lipoxygenase-5 and -12 genes via qPCR analysis. Our results show that lipoxygenase-5 expression, but not that of lipoxygenase-12, changes significantly in the acetominophen-damaged liver.

11.
Histochem Cell Biol ; 146(2): 153-65, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27085705

RESUMEN

The development of thymocytes and generation of mature T cells is a complex process that requires spatio-temporal interactions of thymocytes with the other cells of the thymus microenvironment. Recently, mesenchymal stromal cells were isolated from the neonatal human thymus and differentiated into chondrogenic, osteogenic, and adipogenic lineages, just like their bone marrow counterparts. However, their function in thymocyte homeostasis is unknown. In our autologous co-cultures of rat mesenchymal stromal cells and thymocytes, the stromal cells preserve the viability of cultured thymocytes and stimulate the development of CD4-CD8- double-negative and the maturation of mainly CD4+ single-positive thymocytes. Thymocytes also influence the stemness of bone marrow mesenchymal stromal cells, as their expression of CD44, a marker associated with cellular proliferation and migration, is reduced in co-cultures. Mesenchymal stromal cells' influence on thymocyte development requires direct physical contact between the two cells and is not mediated by a soluble factor. When the two types of cells were physically separated, the stimulative effects of mesenchymal stromal cells on thymocytes did not occur. Electron microscopy confirmed the close contact between the membranes of thymocytes and mesenchymal stromal cells. Our experiments suggest that membrane exchanges could occur between mesenchymal stromal cells and thymocytes, such as the transfer of CD44 from mesenchymal stromal cells to the thymocytes, but its functional significance for thymocytes development remains to be established. These results suggest that mesenchymal stromal cells could normally be a part of the in vivo thymic microenvironment and form a niche that could sustain and guide the development of thymocytes.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Timocitos/citología , Animales , Supervivencia Celular , Técnicas de Cocultivo , Femenino , Citometría de Flujo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Microscopía Confocal , Microscopía Electrónica , Ratas , Ratas Sprague-Dawley , Timocitos/metabolismo
12.
J Cell Physiol ; 231(4): 863-75, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26332160

RESUMEN

Adult bone marrow mesenchymal stromal cells (BMSCs) can easily be differentiated into a variety of cells. In vivo transplantation of BMSCs-differentiated cells has had limited success, suggesting that these cells may not be fully compatible with the cells they are intended to replace in vivo. We investigated the structural and functional features of BMSCs-derived adipocytes as compared with adipocytes from adipose tissue, and the structure and functionality of lipid vesicles formed during BMSCs differentiation to adipocytes. Gas chromatography-mass spectrometry showed fatty acid composition of BMSCs-derived adipocytes and adipocytes from the adipose tissue to be very different, as is the lipid rafts composition, caveolin-1 expression, caveolae distribution in their membranes, and the pattern of expression of fatty acid elongases. Confocal microscopy confirmed the absence from BMSCs-derived adipocytes of markers of lipid droplets. BMSCs-derived adipocytes cannot convert deuterated glucose into deuterated species of fatty acids and cannot uptake the deuterated fatty acid-bovine serum albumin complexes from the culture medium, suggesting that intra-cellular accumulation of lipids does not occur by lipogenesis. We noted that BMSCs differentiation to adipocytes is accompanied by an increase in autophagy. Autophagic vesicles accumulate in the cytoplasm of BMSCs-derived adipocytes and their size and distribution resembles that of Nile Red-stained lipid vesicles. Stimulation of autophagy in BMSCs triggers the intra-cellular accumulation of lipids, while inhibition of autophagy prevents this accumulation. In conclusion, differentiation of BMSCs-derived adipocytes leads to intra-cellular accumulation of autophagic vesicles rather than functional lipid droplets, suggesting that these cells are not authentic adipocytes. J. Cell. Physiol. 231: 863-875, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Adipocitos/citología , Autofagia , Diferenciación Celular , Vesículas Citoplasmáticas/metabolismo , Gotas Lipídicas/metabolismo , Células Madre Mesenquimatosas/citología , Acetiltransferasas/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/citología , Animales , Células de la Médula Ósea/citología , Caveolas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Deuterio/metabolismo , Elongasas de Ácidos Grasos , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glucosa/metabolismo , Lipogénesis , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/ultraestructura , Ratas Sprague-Dawley
13.
Chem Biol Interact ; 242: 335-44, 2015 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-26522476

RESUMEN

Acetaminophen is a commonly used drug that induces serious hepatotoxicity when overdosed, leading to increased levels of serum aminotransferases. However, little knowledge exists linking acetaminophen to liver free fatty acids and the eicosanoid-mediated signaling pathway. To this end, adult NMRI mice injected with a dose of 400 mg/kg acetaminophen were monitored for one week post-treatment. Consistent changes were observed in serum transaminases, profile of hepatic free fatty acids, expression of cyclooxygenase, elongase, lipogenesis, and lipolysis genes; as well as in expression patterns of cyclooxygenase-1 and -2 in the liver. Both linoleic acid and arachidonic acid--substrates in eicosanoid biosynthesis--were significantly influenced by overdose, and the latter peaked first among the free fatty acids examined here. There was a close similarity between the temporal dynamics of linoleic acid and aspartate aminotransferases. Moreover, serum transaminases were reduced by cyclooxygenase-2 inhibitors, but not by cyclooxygenase-1 inhibitors. Our results hence attest to the hazard of acetaminophen overdose on the temporal homeostasis of hepatic concentrations of free fatty acids and expression of key genes underlying liver lipid metabolism. There is also evidence for activation of a cyclooxygenase-mediated signaling pathway, especially the cyclooxygenase 2-prostanoid pathway, during acetaminophen-induced liver injury. Therefore, the results of the present study should provide valuable information to a wide audience, working to understand the health hazard of this drug and the implications of the eicosanoid signaling pathway in liver pathophysiology.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Eicosanoides/metabolismo , Homeostasis/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Ácidos Grasos no Esterificados/química , Ácidos Grasos no Esterificados/metabolismo , Metabolismo de los Lípidos/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones
14.
PLoS One ; 10(3): e0116397, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25790135

RESUMEN

Land snails are highly tolerant to cadmium exposure and are able to accumulate soil cadmium independently of food ingestion. However, little information exists on the kinetics of cadmium retention in terrestrial gastropods exposed to an increase in the soil cadmium content, over time. There is also little knowledge about how exposure to cadmium-polluted soils influences shell growth and architecture. In this context, we examined cadmium accumulation in the hepatopancreas and shell of juvenile Cantareus aspersus exposed to elevating high levels of cadmium in soil. Also, the toxicity of cadmium to snails was assessed using a range of conchological endpoints, including shell height, width, volume, allometry and integrity. Test snails, aged three months, were reared under semi-field conditions, fed an uncontaminated diet and exposed first, for a period of 30 days, to a series of soil cadmium concentrations, and then, for a second period of 30 days, to soils with higher cadmium content. Cadmium showed a dose-dependent accumulation in both the hepatopancreas and shell. The kinetics of cadmium retention in the hepatopancreas of snails previously exposed to cadmium-spiked soils was significantly influenced by a new exposure event. The shell was not a relevant bioaccumulator for soil cadmium. Under the present experimental conditions, only high cadmium exposure significantly affected either the shell growth or snail survival. There was no consistent effect on shell allometry, but the shell integrity, especially in rapidly growing parts, appeared to be affected by high cadmium exposure. Our results attest to the value of hepatopancreas for describing cadmium retention in land snails and to the difficulty of using conchological parameters in field surveys for estimating the environmental hazard of soil cadmium.


Asunto(s)
Cadmio/farmacocinética , Exposición a Riesgos Ambientales , Caracoles Helix/metabolismo , Contaminantes del Suelo/farmacocinética , Absorción Fisiológica , Exoesqueleto/efectos de los fármacos , Exoesqueleto/metabolismo , Animales , Cadmio/toxicidad , Caracoles Helix/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Contaminantes del Suelo/toxicidad
15.
PLoS One ; 9(1): e85384, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454856

RESUMEN

Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.


Asunto(s)
Monitoreo del Ambiente , Industrias , Manganeso/metabolismo , Manganeso/toxicidad , Caracoles/efectos de los fármacos , Caracoles/metabolismo , Suelo/química , Animales , Manganeso/análisis
16.
Chem Cent J ; 7(1): 145, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23987502

RESUMEN

BACKGROUND: Given the serious threats posed to terrestrial ecosystems by industrial contamination, environmental monitoring is a standard procedure used for assessing the current status of an environment or trends in environmental parameters. Measurement of metal concentrations at different trophic levels followed by their statistical analysis using exploratory multivariate methods can provide meaningful information on the status of environmental quality. In this context, the present paper proposes a novel chemometric approach to standard statistical methods by combining the Block clustering with Partial least square (PLS) analysis to investigate the accumulation patterns of metals in anthropized terrestrial ecosystems. The present study focused on copper, zinc, manganese, iron, cobalt, cadmium, nickel, and lead transfer along a soil-plant-snai food chain, and the hepatopancreas of the Roman snail (Helix pomatia) was used as a biological end-point of metal accumulation. RESULTS: Block clustering deliniates between the areas exposed to industrial and vehicular contamination. The toxic metals have similar distributions in the nettle leaves and snail hepatopancreas. PLS analysis showed that (1) zinc and copper concentrations at the lower trophic levels are the most important latent factors that contribute to metal accumulation in land snails; (2) cadmium and lead are the main determinants of pollution pattern in areas exposed to industrial contamination; (3) at the sites located near roads lead is the most threatfull metal for terrestrial ecosystems. CONCLUSION: There were three major benefits by applying block clustering with PLS for processing the obtained data: firstly, it helped in grouping sites depending on the type of contamination. Secondly, it was valuable for identifying the latent factors that contribute the most to metal accumulation in land snails. Finally, it optimized the number and type of data that are best for monitoring the status of metallic contamination in terrestrial ecosystems exposed to different kinds of anthropic polution.

17.
Chem Cent J ; 7(1): 59, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23536970

RESUMEN

BACKGROUND: Sediment bacterial communities are key players in biogeochemical cycling of elements in the aquatic environment. Copper mining, smelting, and processing operations located in Bor area (Serbia) are major environmental hot spots in the lower Danube Basin and Western Balkans. In the present study, we evaluate the influence of trace element (TE) concentration in sediments and physico-chemical properties of water on sediment microbial communities in water streams adjacent to the Copper Smelter Complex Bor (RTB Bor, Serbia). The degree to which metabolic activities of bacterial biota inhabiting differently polluted sites is inhibited by inorganic pollution were compared using selected enzymatic bioindicators. RESULTS: Cu, Zn, Pb, and As concentrations systematically exceeded the target values for metal loadings in aquatic sediments. Water electrical conductivity (WEC) followed the same pattern of spatial variation, irrespective of season. Interestingly, the most intense enzymatic activity occurred at the reference site although this site showed the greatest TE levels in aquatic sediments. Catalase activity (CA), potential dehydrogenase activity (PDA), actual dehydrogenase activity (ADA), urease activity (UA), and phosphatase activity (PA) in aquatic sediments displayed heterogeneous patterns of spatio-temporal variation. Inorganic pollution greatly affected CA, ADA, and PDA, but much less so UA and PA. Canonical correlation analysis showed that pH and WEC were the strongest determinants of enzymatic activity in bacterial biota, with the latter variable being reversely correlated with the enzymatic indicator of sediment quality (EISQ). The median values of EISQ increased with distance from the major sources of pollution. In addition, it was found that sites with different degrees of inorganic pollution can be appropriately classified by applying cluster analysis to EISQ, TE levels in sediments, and physico-chemical properties of water. CONCLUSIONS: Because EISQ can precisely identify changes in overall enzymatic activity of sediment bacterial communities, this enzymatic bioindicator has a great potential for biomonitoring the current status of inorganic pollution in aquatic ecosystems.

19.
Chem Cent J ; 6(1): 55, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22703871

RESUMEN

BACKGROUND: Copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) can pose serious threats to environmental health because they tend to bioaccumulate in terrestrial ecosystems. We investigated under field conditions the transfer of these heavy metals in a soil-plant-snail food chain in Banat area, Romania. The main goal of this paper was to assess the Roman snail (Helix pomatia) usefulness in environmental monitoring as bioindicator of heavy metal accumulation. Eight sampling sites, selected by different history of heavy metal (HM) exposure, were chosen to be sampled for soil, nettle leaves, and newly matured snails. This study also aimed to identify the putative effects of HM accumulation in the environment on phenotypic variability in selected shell features, which included shell height (SH), relative shell height (RSH), and whorl number (WN). RESULTS: Significantly higher amounts of HMs were accumulated in snail hepatopancreas and not in foot. Cu, Zn, and Cd have biomagnified in the snail body, particularly in the hepatopancreas. In contrast, Pb decreased when going up into the food chain. Zn, Cd, and Pb correlated highly with each other at all levels of the investigated food chain. Zn and Pb exhibited an effective soil-plant transfer, whereas in the snail body only foot Cu concentration was correlated with that in soil. There were significant differences among sampling sites for WN, SH, and RSH when compared with reference snails. WN was strongly correlated with Cd and Pb concentrations in nettle leaves but not with Cu and Zn. SH was independent of HM concentrations in soil, snail hepatopancreas, and foot. However, SH correlated negatively with nettle leaves concentrations for each HM except Cu. In contrast, RSH correlated significantly only with Pb concentration in hepatopancreas. CONCLUSIONS: The snail hepatopancreas accumulates high amounts of HMs, and therefore, this organ can function as a reliable biomarker for tracking HM bioavailability in soil. Long-term exposure to HMs via contaminated food might influence the variability of shell traits in snail populations. Therefore, our results highlight the Roman snail (Helix pomatia) potential to be used in environmental monitoring studies as bioindicator of HM pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...