Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558040

RESUMEN

Tourism is one of the most important activities for the economy of Nor Patagonia Argentina. In Bariloche City, located on the shores of Lake Nahuel Huapi, both the permanent and the temporary populations have increased significantly in recent decades, and this has not necessarily been accompanied by an improvement in sewage networks. Emerging micropollutants such as pharmaceutical compounds reach aquatic systems directly, in the absence of a domestic sewage network, or through effluents from wastewater treatment plants (WWTP), which do not efficiently remove these substances and represent a major threat to the environment. Therefore, the objective of our study was to monitor the presence of pharmaceutical compounds discharged both through wastewater effluents and diffusely from housing developments into Lake Nahuel Huapi. The results obtained demonstrate the presence of pharmaceuticals in Lake Nahuel Huapi with concentrations ranging from not detectable (ND) to 110.6 ng L-1 (caffeine). The highest pharmaceutical concentration recorded in WWTP influent corresponded to caffeine (41728 ng L-1), and the lowest concentration was paracetamol (18.8 ng L-1). The removal efficiency of pharmaceuticals in the WWTP was calculated, and ranged from 0% for carbamazepine to 66% for ciprofloxacin. This antibiotic showed the lowest % of attenuation (73%) in Lake Nahuel Huapi. These results on the occurrence of a wide variety of pharmaceuticals are the first generated in Patagonia, representing a regional baseline for this type of micropollutant and valuable information for the subsequent design of removal strategies for emerging pharmaceutical pollutants in surface water. Environ Toxicol Chem 2024;00:1-11. © 2024 SETAC.

2.
Chemosphere ; 80(3): 340-5, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20417542

RESUMEN

Previous studies of nitrobenzene (NB) degradation by Fenton and photo-Fenton technologies have demonstrated the formation and accumulation of 1,3-dinitrobenzene (1,3-DNB) as a highly toxic reaction intermediate. In the present study, we analyze the conditions that favor 1,3-DNB formation during NB degradation by Fe(2+)/H(2)O(2), Fe(3+)/H(2)O(2), UV/Fe(3+)/H(2)O(2) or UV/H(2)O(2) processes. Nitration yields in Fenton, Fenton-like and photo-Fenton techniques were much higher than those observed in UV/H(2)O(2) systems. Besides, several tests showed that 1,3-DNB formation increases with the initial iron concentration and decreases as the initial H(2)O(2) concentration increases. In order to asses the key species involved in NB nitration mechanism, additional experiments were performed in the presence of NO(2)(-)or NO(3)(-). In dark systems, 1,3-DNB yield significantly increased with increasing [NO(2)(-)]_(0), while it was not affected by the presence of NO(3)(-). In contrast, 1,3-DNB yields were higher and more strongly affected by the additive concentration in UV/NO(3)(-) systems than in UV/HNO(2)/NO(2)(-) systems. Dark experiments performed at pH 1.5 in excess of HNO(2) along with UV/NO(3)(-) tests conducted in the presence of 2-propanol show that hydroxyl radicals play an important role in NB nitration since NB molecule does not react with the nitrating agents ONOOH, .NO or .NO(2). The results indicate that, in the experimental domain tested, the prevailing NB nitration pathway involves the reaction between the .OH-NB adduct and .NO(2) radicals.


Asunto(s)
Peróxido de Hidrógeno/química , Hierro/química , Nitrobencenos/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Dinitrobencenos/análisis , Dinitrobencenos/química , Fotólisis , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...