Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Nat Commun ; 11(1): 4798, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968066

RESUMEN

Myeloid cells are known mediators of hypertension, but their role in initiating renin-induced hypertension has not been studied. Vitamin D deficiency causes pro-inflammatory macrophage infiltration in metabolic tissues and is linked to renin-mediated hypertension. We tested the hypothesis that impaired vitamin D signaling in macrophages causes hypertension using conditional knockout of the myeloid vitamin D receptor in mice (KODMAC). These mice develop renin-dependent hypertension due to macrophage infiltration of the vasculature and direct activation of renal juxtaglomerular (JG) cell renin production. Induction of endoplasmic reticulum stress in knockout macrophages increases miR-106b-5p secretion, which stimulates JG cell renin production via repression of transcription factors E2f1 and Pde3b. Moreover, in wild-type recipient mice of KODMAC/miR106b-/- bone marrow, knockout of miR-106b-5p prevents the hypertension and JG cell renin production induced by KODMAC macrophages, suggesting myeloid-specific, miR-106b-5p-dependent effects. These findings confirm macrophage miR-106b-5p secretion from impaired vitamin D receptor signaling causes inflammation-induced hypertension.


Asunto(s)
Hipertensión Renal/metabolismo , Hipertensión/metabolismo , Macrófagos/metabolismo , MicroARNs/metabolismo , Nefritis/metabolismo , Renina/metabolismo , Animales , Médula Ósea , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/metabolismo , Estrés del Retículo Endoplásmico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides , Receptores de Calcitriol , Vitamina D
2.
Diabetes Obes Metab ; 14 Suppl 3: 129-35, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22928573

RESUMEN

Hyperglycaemia has multiple effects on ß-cells, some clearly prosecretory, including hyperplasia and elevated insulin content, but eventually, a 'glucotoxic' effect which leads to pancreatic ß-cell dysfunction, reduced ß-cell mass and insulin deficiency, is an important part of diabetes pathophysiology. Myriad underlying cellular and molecular processes could lead to such dysfunction. High glucose will stimulate glycolysis and oxidative phosphorylation, which will in turn increase ß-cell membrane excitability through K(ATP) channel closure. Chronic hyperexcitability will then lead to persistently elevated [Ca(2+)](i), a key trigger to insulin secretion. Thus, at least a part of the consequence of 'hyperstimulation' by glucose has been suggested to be a result of 'hyperexcitability' and chronically elevated [Ca(2+)](i). This link is lost when the [glucose], K(ATP) -channel activity link is broken, either pharmacologically or genetically. In isolated islets, such studies reveal that hyperexcitability causes a largely reversible chronic loss of insulin content, but in vivo chronic hyperexcitability per se does not lead to ß-cell death or loss of insulin content. On the other hand, chronic inexcitability in vivo leads to systemic diabetes and consequential ß-cell death, even while [Ca(2+)](i) remains low.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hiperglucemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/farmacología , Canales KATP/farmacología , Animales , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Glucosa/metabolismo , Glucólisis , Humanos , Hiperglucemia/fisiopatología , Ratones , Ratones Transgénicos , Fosforilación Oxidativa
3.
Diabetologia ; 54(5): 1087-97, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21271337

RESUMEN

AIMS/HYPOTHESIS: Mutations that render ATP-sensitive potassium (K(ATP)) channels insensitive to ATP inhibition cause neonatal diabetes mellitus. In mice, these mutations cause insulin secretion to be lost initially and, as the disease progresses, beta cell mass and insulin content also disappear. We investigated whether defects in calcium signalling alone are sufficient to explain short-term and long-term islet dysfunction. METHODS: We examined the metabolic, electrical and insulin secretion response in islets from mice that become diabetic after induction of ATP-insensitive Kir6.2 expression. To separate direct effects of K(ATP) overactivity on beta cell function from indirect effects of prolonged hyperglycaemia, normal glycaemia was maintained by protective exogenous islet transplantation. RESULTS: In endogenous islets from protected animals, glucose-dependent elevations of intracellular free-calcium activity ([Ca(2+)](i)) were severely blunted. Insulin content of these islets was normal, and sulfonylureas and KCl stimulated increased [Ca(2+)](i). In the absence of transplant protection, [Ca(2+)](i) responses were similar, but glucose metabolism and redox state were dramatically altered; sulfonylurea- and KCl-stimulated insulin secretion was also lost, because of systemic effects induced by long-term hyperglycaemia and/or hypoinsulinaemia. In both cases, [Ca(2+)](i) dynamics were synchronous across the islet. After reduction of gap-junction coupling, glucose-dependent [Ca(2+)](i) and insulin secretion was partially restored, indicating that excitability of weakly expressing cells is suppressed by cells expressing mutants, via gap-junctions. CONCLUSIONS/INTERPRETATION: The primary defect in K(ATP)-induced neonatal diabetes mellitus is failure of glucose metabolism to elevate [Ca(2+)](i), which suppresses insulin secretion and mildly alters islet glucose metabolism. Loss of insulin content and mitochondrial dysfunction are secondary to the long-term hyperglycaemia and/or hypoinsulinaemia that result from the absence of glucose-dependent insulin secretion.


Asunto(s)
Señalización del Calcio/fisiología , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Animales , Animales Recién Nacidos , Calcio/metabolismo , Señalización del Calcio/genética , Diabetes Mellitus/etiología , Secreción de Insulina , Canales KATP/genética , Ratones , Ratones Transgénicos , Canales de Potasio de Rectificación Interna/genética
4.
Diabetes Obes Metab ; 9 Suppl 2: 81-8, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17919182

RESUMEN

Nutrient oxidation in beta cells generates a rise in [ATP]:[ADP] ratio. This reduces K(ATP) channel activity, leading to depolarization, activation of voltage-dependent Ca(2+) channels, Ca(2+) entry and insulin secretion. Consistent with this paradigm, loss-of-function mutations in the genes (KCNJ11 and ABCC8) that encode the two subunits (Kir6.2 and SUR1, respectively) of the ATP-sensitive K(+) (K(ATP)) channel underlie hyperinsulinism in humans, a genetic disorder characterized by dysregulated insulin secretion. In mice with genetic suppression of K(ATP) channel subunit expression, partial loss of K(ATP) channel conductance also causes hypersecretion, but unexpectedly, complete loss results in an undersecreting, mildly glucose-intolerant phenotype. When challenged by a high-fat diet, normal mice and mice with reduced K(ATP) channel density respond with hypersecretion, but mice with more significant or complete loss of K(ATP) channels cross over, or progress further, to an undersecreting, diabetic phenotype. It is our contention that in mice, and perhaps in humans, there is an inverse U-shaped response to hyperexcitabilty, leading first to hypersecretion but with further exacerbation to undersecretion and diabetes. The causes of the overcompensation and diabetic susceptibility are poorly understood but may have broader implications for the progression of hyperinsulinism and type 2 diabetes in humans.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Hiperinsulinismo/genética , Células Secretoras de Insulina/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hiperinsulinismo/metabolismo , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Ratones , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/genética
5.
Glia ; 55(3): 274-81, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17091490

RESUMEN

Glial cell-mediated potassium and glutamate homeostases play important roles in the regulation of neuronal excitability. Diminished potassium and glutamate buffering capabilities of astrocytes result in hyperexcitability of neurons and abnormal synaptic transmission. The role of the different K+ channels in maintaining the membrane potential and buffering capabilities of cortical astrocytes has not yet been definitively determined due to the lack of specific K+ channel blockers. The purpose of the present study was to assess the role of the inward-rectifying K+ channel subunit Kir4.1 on potassium fluxes, glutamate uptake and membrane potential in cultured rat cortical astrocytes using RNAi, whole-cell patch clamp and a colorimetric assay. The membrane potentials of control cortical astrocytes had a bimodal distribution with peaks at -68 and -41 mV. This distribution became unimodal after knockdown of Kir4.1, with the mean membrane potential being shifted in the depolarizing direction (peak at -45 mV). The ability of Kir4.1-suppressed cells to mediate transmembrane potassium flow, as measured by the current response to voltage ramps or sequential application of different extracellular [K+], was dramatically impaired. In addition, glutamate uptake was inhibited by knock-down of Kir4.1-containing channels by RNA interference as well as by blockade of Kir channels with barium (100 microM). Together, these data indicate that Kir4.1 channels are primarily responsible for significant hyperpolarization of cortical astrocytes and are likely to play a major role in potassium buffering. Significant inhibition of glutamate clearance in astrocytes with knock-down of Kir4.1 highlights the role of membrane hyperpolarization in this process.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Regulación hacia Abajo/genética , Ácido Glutámico/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Bario/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Ácido Glutámico/farmacocinética , Homeostasis/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/genética , Interferencia de ARN/fisiología , Ratas
6.
J Mol Cell Cardiol ; 41(5): 855-67, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16996082

RESUMEN

Kir2.1 and Kir6.2 are ion channel subunits partly responsible for the background inward rectifier and ATP-sensitive K(+) currents (I(K1) and I(KATP)) in the heart. Very little is known about how the distribution of ion channel subunits is controlled. In this study, we have investigated the expression (at protein and mRNA levels) of GFP-tagged Kir2.1 and Kir6.2 transgenes under the control of the alpha-MHC promoter in the sinoatrial node (SAN), atrioventricular node (AVN), His bundle and working myocardium of transgenic mice. After dissection, serial 10-microm cryosections were cut. Histological staining was carried out to identify tissues, confocal microscopy was carried out to map the distribution of the GFP-tagged ion channel subunits and in situ hybridization was carried out to map the distribution of corresponding mRNAs. We demonstrate heterologous expression of the ion channel subunits in the working myocardium, but not necessarily in the SAN, AVN or His bundle; the distribution of the subunits does not correspond to the expected distribution of alpha-MHC. Both protein and mRNA expression does, however, correspond to the expected distributions of native Kir6.2 and Kir2.1 in the SAN, AVN, His bundle and working myocardium. The data demonstrate novel transcriptional and/or post-transcriptional control of ion channel subunit expression and raise important questions about the control of regional expression of ion channels.


Asunto(s)
Nodo Atrioventricular/metabolismo , Cadenas Pesadas de Miosina/genética , Canales de Potasio de Rectificación Interna/metabolismo , Nodo Sinoatrial/metabolismo , Animales , Relojes Biológicos , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Miocardio/ultraestructura , Cadenas Pesadas de Miosina/metabolismo , Canales de Potasio de Rectificación Interna/genética , Regiones Promotoras Genéticas , Transgenes
7.
Diabetologia ; 49(10): 2368-78, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16924481

RESUMEN

AIMS/HYPOTHESIS: ATP-sensitive K(+) (K(ATP)) channels couple glucose metabolism to insulin secretion in pancreatic beta cells. In humans, loss-of-function mutations of beta cell K(ATP) subunits (SUR1, encoded by the gene ABCC8, or Kir6.2, encoded by the gene KCNJ11) cause congenital hyperinsulinaemia. Mice with dominant-negative reduction of beta cell K(ATP) (Kir6.2[AAA]) exhibit hyperinsulinism, whereas mice with zero K(ATP) (Kir6.2(-/-)) show transient hyperinsulinaemia as neonates, but are glucose-intolerant as adults. Thus, we propose that partial loss of beta cell K(ATP) in vivo causes insulin hypersecretion, but complete absence may cause insulin secretory failure. MATERIALS AND METHODS: Heterozygous Kir6.2(+/-) and SUR1(+/-) animals were generated by backcrossing from knockout animals. Glucose tolerance in intact animals was determined following i.p. loading. Glucose-stimulated insulin secretion (GSIS), islet K(ATP) conductance and glucose dependence of intracellular Ca(2+) were assessed in isolated islets. RESULTS: In both of the mechanistically distinct models of reduced K(ATP) (Kir6.2(+/-) and SUR1(+/-)), K(ATP) density is reduced by approximately 60%. While both Kir6.2(-/-) and SUR1(-/-) mice are glucose-intolerant and have reduced glucose-stimulated insulin secretion, heterozygous Kir6.2(+/-) and SUR1(+/-) mice show enhanced glucose tolerance and increased GSIS, paralleled by a left-shift in glucose dependence of intracellular Ca(2+) oscillations. CONCLUSIONS/INTERPRETATION: The results confirm that incomplete loss of beta cell K(ATP) in vivo underlies a hyperinsulinaemic phenotype, whereas complete loss of K(ATP) underlies eventual secretory failure.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Hiperinsulinismo/genética , Pérdida de Heterocigocidad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/genética , Animales , Glucemia/metabolismo , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Cinética , Ratones , Ratones Noqueados , Canales de Potasio/genética , Receptores de Droga , Receptores de Sulfonilureas
8.
Cell Metab ; 3(1): 5-7, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16399499

RESUMEN

Nicotinamide nucleotide transhydrogenase (Nnt) detoxifies reactive oxygen species (ROS), byproducts of mitochondrial metabolism that, when accumulated, can decrease mitochondrial ATP production. In this issue of Cell Metabolism, demonstrate that Nnt in pancreatic beta cells is important for insulin release. Their compelling data highlight the critical roles for ATP generation and subsequent closure of KATP channels for insulin secretion.


Asunto(s)
Insulina/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/fisiología , NADP Transhidrogenasas/fisiología , Animales , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/metabolismo , Ratones , Proteínas Mitocondriales/genética , NADP Transhidrogenasas/genética
9.
Mol Pharmacol ; 68(2): 298-304, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15872118

RESUMEN

Polyamines cause inward rectification of Kir K(+) channels by blocking deep within the channel pore. We investigated structural constraints of polyamine block of strongly rectifying mutant K(ATP) channels (Kir6.2[L164C,N160D,C166S] + SUR1). We studied three groups of polyamine analogs: 1) conformationally restricted linear tetra-amines with a cycloalkyl or alkene group between the second and third amines (CGC-11047, CGC-11093, CGC-11099, and CGC-11098), 2) conformationally restricted linear deca-amines with a cycloalkyl or alkene group between the fifth and sixth amines (CGC-11150, CGC-11179, and CGC-11241), and 3) cyclic tetra-amines (CGC-11174, CGC-11197, CGC-11199, and CGC-11254). All linear analogs cause a voltage-dependent block similar to that of spermine, but slightly weaker (at 1 microM, V(1/2) for spermine block = -10 +/- 1 mV, Z = 2.9 +/- 0.1, n = 19; V(1/2) for analogs varies from polyamine -7 to +10 mV, Z = 2.6-3.9). These data indicate tolerance for conformational restriction and an upper limit to the voltage dependence of the blocking process. There was no voltage-dependent block by the cyclic compounds; instead, they induce irreversible rundown of the current. Structural models of Kir channels suggest that a narrow entry at the top of the cytoplasmic pore may exclude cyclic analogs from the inner cavity, thereby explaining the structure-activity relationship that we observe.


Asunto(s)
Poliaminas/química , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/química , Animales , Células COS , Chlorocebus aethiops , Poliaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/biosíntesis
11.
J Physiol ; 553(Pt 1): 95-100, 2003 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12963797

RESUMEN

Diverse polyamine transport systems have been described in different cells, but the molecular entities that mediate polyamine influx and efflux remain incompletely defined. We have previously demonstrated that spermidine efflux from oocytes is a simple electrodiffusive process, inhibitable by external Ca2+, consistent with permeation through a membrane cation channel. Hemi-gap junctional channels in Xenopus oocytes are formed from connexin 38 (Cx38), and produce a calcium-sensitive (Ic) current that is inhibited by external Ca2+. Spermidine efflux is also calcium sensitive, and removal of external calcium increases both Ic currents and spermidine efflux in Xenopus oocytes. Injection of Cx38 cRNA or Cx38 antisense oligonucleotides (to increase or decrease, respectively, Cx38 expression) also increases or decreases spermidine efflux in parallel. Spermidine efflux has a large voltage-dependent component, which is abolished with injection of Cx38 antisense oligonucleotides. In addition, spermidine uptake is significantly increased in Cx38 cRNA-injected oocytes in the absence of external calcium. The data indicate that hemi-gap junctional channels provide the Ca2+-inhibited pathway for electrodiffusive efflux of polyamines from oocytes, and it is likely that hemi-gap junctional channels provide Ca2+ and metabolism-sensitive polyamine permeation pathways in other cells.


Asunto(s)
Poliaminas Biogénicas/metabolismo , Uniones Comunicantes/metabolismo , Animales , Calcio/fisiología , Membrana Celular/metabolismo , Conexinas/metabolismo , Conexinas/fisiología , Electrofisiología , Femenino , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Espermidina/metabolismo , Xenopus laevis
12.
Proc Natl Acad Sci U S A ; 99(26): 16992-7, 2002 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-12486236

RESUMEN

ATP-sensitive K+ (K(ATP)) channels couple cell metabolism to electrical activity. To probe the role of K(ATP) in glucose-induced insulin secretion, we have generated transgenic mice expressing a dominant-negative, GFP-tagged K(ATP) channel subunit in which residues 132-134 (Gly-Tyr-Gly) in the selectivity filter were replaced by Ala-Ala-Ala, under control of the insulin promoter. Transgene expression was confirmed by both beta cell-specific green fluorescence and complete suppression of channel activity in those cells ( approximately 70%) that did fluoresce. Transgenic mice developed normally with no increased mortality and displayed normal body weight, blood glucose levels, and islet architecture. However, hyperinsulinism was evident in adult mice as (i) a disproportionately high level of circulating serum insulin for a given glucose concentration ( approximately 2-fold increase in blood insulin), (ii) enhanced glucose-induced insulin release from isolated islets, and (iii) mild yet significant enhancement in glucose tolerance. Enhanced glucose-induced insulin secretion results from both increased glucose sensitivity and increased release at saturating glucose concentration. The results suggest that incomplete suppression of K(ATP) channel activity can give rise to a maintained hyperinsulinism.


Asunto(s)
Adenosina Trifosfato/farmacología , Hiperinsulinismo/etiología , Islotes Pancreáticos/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Animales , Calcio/metabolismo , Hipoglucemia/etiología , Insulina/metabolismo , Secreción de Insulina , Ratones , Ratones Transgénicos
13.
Trends Cardiovasc Med ; 12(6): 253-8, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12242048

RESUMEN

The last 10 years have seen rapid advances in the understanding of potassium channel function. Since the first inward rectifying (Kir) channels were cloned in 1994, the structural basis of channel function has been significantly elucidated, and determination of the crystal structure of a bacterial K channel (KcsA) in 1998 provided an atomic resolution of the permeation pathway. This review considers recent experimental studies aimed at uncovering the structural basis of Kir channel activity, and the applicability of comparative models based on KcsA to illuminate Kir channel pore structure and opening and closing processes.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio de Rectificación Interna/ultraestructura , Humanos
14.
J Gen Physiol ; 120(3): 437-46, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12198096

RESUMEN

Approximately half of the NH(2) terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than approximately 30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH(2) terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH(2) terminus, as well as the relationship of the NH(2) terminus with the extended cytoplasmic COOH terminus of the channel.


Asunto(s)
Canales de Potasio de Rectificación Interna/fisiología , Secuencia de Aminoácidos/fisiología , Animales , Células COS , Chlorocebus aethiops , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Mutación Puntual/fisiología , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética
15.
Am J Physiol Endocrinol Metab ; 283(3): E403-12, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12169432

RESUMEN

The critical involvement of ATP-sensitive potassium (KATP) channels in insulin secretion is confirmed both by the demonstration that mutations that reduce KATP channel activity underlie many if not most cases of persistent hyperinsulinemia, and by the ability of sulfonylureas, which inhibit KATP channels, to enhance insulin secretion in type II diabetics. By extrapolation, we contend that mutations that increase beta-cell KATP channel activity should inhibit glucose-dependent insulin secretion and underlie, or at least predispose to, a diabetic phenotype. In transgenic animal models, this prediction seems to be borne out. Although earlier genetic studies failed to demonstrate a linkage between KATP mutations and diabetes in humans, recent studies indicate significant association of KATP channel gene mutations or polymorphisms and type II diabetes. We suggest that further efforts to understand the involvement of KATP channels in diabetes are warranted.


Asunto(s)
Diabetes Mellitus/metabolismo , Insulina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Diabetes Mellitus/etiología , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Humanos , Hiperinsulinismo/etiología , Secreción de Insulina , Polimorfismo Genético , Canales de Potasio/genética , Canales de Potasio/metabolismo
16.
Am J Physiol Endocrinol Metab ; 283(2): E207-16, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12110524

RESUMEN

ATP-sensitive potassium (K(ATP)) channels are inhibited by intracellular ATP and activated by ADP. Nutrient oxidation in beta-cells leads to a rise in [ATP]-to-[ADP] ratios, which in turn leads to reduced K(ATP) channel activity, depolarization, voltage-dependent Ca(2+) channel activation, Ca(2+) entry, and exocytosis. Persistent hyperinsulinemic hypoglycemia of infancy (HI) is a genetic disorder characterized by dysregulated insulin secretion and, although rare, causes severe mental retardation and epilepsy if left untreated. The last five or six years have seen rapid advance in understanding the molecular basis of K(ATP) channel activity and the molecular genetics of HI. In the majority of cases for which a genotype has been uncovered, causal HI mutations are found in one or the other of the two genes, SUR1 and Kir6.2, that encode the K(ATP) channel. This article will review studies that have defined the link between channel activity and defective insulin release and will consider implications for future understanding of the mechanisms of control of insulin secretion in normal and diseased states.


Asunto(s)
Adenosina Trifosfato/fisiología , Enfermedades del Sistema Endocrino/metabolismo , Insulina/metabolismo , Canales de Potasio/metabolismo , Animales , Finlandia/epidemiología , Humanos , Hiperinsulinismo/complicaciones , Hiperinsulinismo/congénito , Hiperinsulinismo/epidemiología , Hiperinsulinismo/genética , Hipoglucemia/etiología , Incidencia , Recién Nacido , Secreción de Insulina , Mutación , Canales de Potasio/genética
17.
Am J Physiol Heart Circ Physiol ; 283(2): H584-90, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12124205

RESUMEN

The functional significance of ATP-sensitive K(+) (K(ATP)) channels is controversial. In the present study, transgenic mice expressing a mutant Kir6.2, with reduced ATP sensitivity, were used to examine the role of sarcolemmal K(ATP) in normal cardiac function and after an ischemic or metabolic challenge. We found left ventricular developed pressure (LVDP) was 15-20% higher in hearts from transgenics in the absence of cardiac hypertrophy. beta-Adrenergic stimulation caused a positive inotropic response from nontransgenic hearts that was not observed in transgenic hearts. Decreasing extracellular Ca(2+) decreased LVDP in hearts from nontransgenics but not in those from transgenics. These data suggest an increase in intracellular [Ca(2+)] in transgenic hearts. Additional studies have demonstrated hearts from nontransgenics and transgenics have a similar postischemic LVDP. However, ischemic preconditioning does not improve postischemic recovery in transgenics. Transgenic hearts also demonstrate a poor recovery after metabolic inhibition. These data are consistent with the hypothesis that sarcolemmal K(ATP) channels are required for development of normal myocardial function, and perturbations of K(ATP) channels lead to hearts that respond poorly to ischemic or metabolic challenges.


Asunto(s)
Adenosina Trifosfato/fisiología , Contracción Miocárdica , Isquemia Miocárdica/fisiopatología , Canales de Potasio/metabolismo , Sarcolema/metabolismo , Animales , Desoxiglucosa/metabolismo , Técnicas In Vitro , Precondicionamiento Isquémico Miocárdico , Ratones , Ratones Transgénicos/genética , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Presión , Valores de Referencia , Cianuro de Sodio/farmacología , Función Ventricular Izquierda/efectos de los fármacos
18.
J Cardiovasc Electrophysiol ; 12(10): 1195-8, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11699533

RESUMEN

ATP-sensitive potassium (K(ATP)) channels are inhibited by intracellular ATP and thus couple the metabolic state of the cell to its electrical activity. Tremendous progress has been made in the identification of the molecular basis of K(ATP) channel function and regulation. The answer to one key question, however, has proven elusive: What are the precise conditions for, and functional consequences of, sarcolemmal K(ATP) activation in physiologic and pathophysiologic states? Here we consider recent studies of the molecular basis of cardiac K(ATP) channel activity and the role of these channels in cardiac function during ischemia.


Asunto(s)
Adenosina Trifosfato/fisiología , Corazón/fisiología , Canales de Potasio/fisiología , Sarcolema/química , Adenosina Trifosfato/análisis , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/terapia , Electrocardiografía , Humanos , Precondicionamiento Isquémico Miocárdico , Modelos Moleculares , Canales de Potasio/análisis
19.
Circ Res ; 89(11): 944-56, 2001 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-11717150

RESUMEN

In the mammalian myocardium, potassium (K(+)) channels control resting potentials, action potential waveforms, automaticity, and refractory periods and, in most cardiac cells, multiple types of K(+) channels that subserve these functions are expressed. Molecular cloning has revealed the presence of a large number of K(+) channel pore forming (alpha) and accessory (beta) subunits in the heart, and considerable progress has been made recently in defining the relationships between expressed K(+) channel subunits and functional cardiac K(+) channels. To date, more than 20 mouse models with altered K(+) channel expression/functioning have been generated using dominant-negative transgenic and targeted gene deletion approaches. In several instances, the genetic manipulation of K(+) channel subunit expression has revealed the role of specific K(+) channel subunit subfamilies or individual K(+) channel subunit genes in the generation of myocardial K(+) channels. In other cases, however, the phenotypic consequences have been unexpected. This review summarizes what has been learned from the in situ genetic manipulation of cardiac K(+) channel functioning in the mouse, discusses the limitations of the models developed to date, and explores the likely directions of future research.


Asunto(s)
Modelos Animales de Enfermedad , Corazón/fisiología , Canales de Potasio/genética , Canales de Potasio/fisiología , Potenciales de Acción , Animales , Canales de Potasio de Tipo Rectificador Tardío , Conductividad Eléctrica , Predicción , Cardiopatías/etiología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/fisiología
20.
Circ Res ; 89(11): 1022-9, 2001 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-11717159

RESUMEN

To examine the role of sarcolemmal K(ATP) channels in cardiac function, we generated transgenic mice expressing GFP-tagged Kir6.2 subunits with reduced ATP sensitivity under control of the cardiac alpha-myosin heavy chain promoter. Four founder mice were isolated, and both founders and progeny were all apparently normal and fertile. Electrocardiograms from conscious animals also appeared normal, although mean 24-hour heart rate was approximately 10% lower in transgenic animals compared with littermate controls. In excised membrane patches, K(ATP) channels were very insensitive to inhibitory ATP: mean K(1/2) ([ATP] causing half-maximal inhibition) was 2.7 mmol/L in high-expressing line 4 myocytes, compared with 51 micromol/L in littermate control myocytes. Counterintuitively, K(ATP) channel density was approximately 4-fold lower in transgenic membrane patches than in control. This reduction of total K(ATP) conductance was confirmed in whole-cell voltage-clamp conditions, in which K(ATP) was activated by metabolic inhibition. K(ATP) conductance was not obvious after break-in of either control or transgenic myocytes, and there was no action potential shortening in transgenic myocytes. In marked contrast to the effects of expression of similar transgenes in pancreatic beta-cells, these experiments demonstrate a profound tolerance for reduced ATP sensitivity of cardiac K(ATP) channels and highlight differential effects of channel activity in the electrical activity of the 2 tissues.


Asunto(s)
Adenosina Trifosfato/farmacología , Corazón/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna , Canales de Potasio/genética , Canales de Potasio/fisiología , Potenciales de Acción , Animales , Células COS , Células Cultivadas , Conductividad Eléctrica , Electrocardiografía , Proteínas Fluorescentes Verdes , Indicadores y Reactivos/metabolismo , Cinética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Mutación , Miocardio/citología , Sarcolema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA