Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Oceanogr ; 28(5): 532-566, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31598058

RESUMEN

The timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological-human systems; and (d) potential phenology-focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events. The most common response was earlier timing, observed in spring onset, spring and winter hydrology, zooplankton abundance, occurrence of several larval fishes, and diadromous fish migrations. Later timing was documented for fall onset, reproduction and fledging in Atlantic puffins, spring and fall phytoplankton blooms, and occurrence of additional larval fishes. Changes in event duration generally increased and were detected in zooplankton peak abundance, early life history periods of macro-invertebrates, and lobster fishery landings. Reduced duration was observed in winter-spring ice-affected stream flows. Two studies projected phenological changes, both finding diapause duration would decrease in zooplankton under future climate scenarios. Phenological responses were species-specific and varied depending on the environmental driver, spatial, and temporal scales evaluated. Overall, a wide range of baseline phenology and relevant modeling studies exist, yet surprisingly few document long-term shifts. Results reveal a need for increased emphasis on phenological shifts in the Gulf of Maine and identify opportunities for future research and consideration of phenological changes in adaptation efforts.

2.
Adv Mar Biol ; 67: 99-233, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24880795

RESUMEN

Cephalopods are a relatively small class of molluscs (~800 species), but they support some large industrial scale fisheries and numerous small-scale, local, artisanal fisheries. For several decades, landings of cephalopods globally have grown against a background of total finfish landings levelling off and then declining. There is now evidence that in recent years, growth in cephalopod landings has declined. The commercially exploited cephalopod species are fast-growing, short-lived ecological opportunists. Annual variability in abundance is strongly influenced by environmental variability, but the underlying causes of the links between environment and population dynamics are poorly understood. Stock assessment models have recently been developed that incorporate environmental processes that drive variability in recruitment, distribution and migration patterns. These models can be expected to improve as more, and better, data are obtained on environmental effects and as techniques for stock identification improve. A key element of future progress will be improved understanding of trophic dynamics at all phases in the cephalopod life cycle. In the meantime, there is no routine stock assessment in many targeted fisheries or in the numerous by-catch fisheries for cephalopods. There is a particular need for a precautionary approach in these cases. Assessment in many fisheries is complicated because cephalopods are ecological opportunists and stocks appear to have benefited from the reduction of key predator by overexploitation. Because of the complexities involved, ecosystem-based fisheries management integrating social, economic and ecological considerations is desirable for cephalopod fisheries. An ecological approach to management is routine in many fisheries, but to be effective, good scientific understanding of the relationships between the environment, trophic dynamics and population dynamics is essential. Fisheries and the ecosystems they depend on can only be managed by regulating the activities of the fishing industry, and this requires understanding the dynamics of the stocks they exploit.


Asunto(s)
Cefalópodos/fisiología , Explotaciones Pesqueras , Animales , Ecosistema , Explotaciones Pesqueras/economía , Dinámica Poblacional , Reproducción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA