Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 8(1): 91, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301890

RESUMEN

Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycoproteins have proven to be remarkably effective vaccines. Indeed, rVSV-EBOV, which expresses the Ebola virus (EBOV) glycoprotein, recently received clinical approval in the United States and Europe for its ability to prevent EBOV disease. Analogous rVSV vaccines expressing glycoproteins of different human-pathogenic filoviruses have also demonstrated efficacy in pre-clinical evaluations, yet these vaccines have not progressed far beyond research laboratories. In the wake of the most recent outbreak of Sudan virus (SUDV) in Uganda, the need for proven countermeasures was made even more acute. Here we demonstrate that an rVSV-based vaccine expressing the SUDV glycoprotein (rVSV-SUDV) generates a potent humoral immune response that protects guinea pigs from SUDV disease and death. Although the cross-protection generated by rVSV vaccines for different filoviruses is thought to be limited, we wondered whether rVSV-EBOV might also provide protection against SUDV, which is closely related to EBOV. Surprisingly, nearly 60% of guinea pigs that were vaccinated with rVSV-EBOV and challenged with SUDV survived, suggesting that rVSV-EBOV offers limited protection against SUDV, at least in the guinea pig model. These results were confirmed by a back-challenge experiment in which animals that had been vaccinated with rVSV-EBOV and survived EBOV challenge were inoculated with SUDV and survived. Whether these data are applicable to efficacy in humans is unknown, and they should therefore be interpreted cautiously. Nevertheless, this study confirms the potency of the rVSV-SUDV vaccine and highlights the potential for rVSV-EBOV to elicit a cross-protective immune response.

2.
J Infect Dis ; 227(10): 1203-1213, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36408618

RESUMEN

BACKGROUND: Although modified vaccinia Ankara-Bavarian Nordic (MVA-BN) vaccination is approved for smallpox and monkeypox prevention, immunological persistence and booster effects remain undescribed. METHODS: Participants naive to smallpox vaccination were randomized to 1 dose MVA-BN (1×MVA, n = 181), 2 doses MVA-BN (2×MVA, n = 183), or placebo (n = 181). Participants with previous smallpox vaccination received 1 MVA-BN booster (HSPX, n = 200). Subsets of the formerly naive groups (approximately 75 each) received an MVA-BN booster 2 years later. RESULTS: Neutralizing antibody (nAb) geometric mean titers (GMTs) increased from 1.1 (baseline, both naive groups) to 7.2 and 7.5 (week 4, 1×MVA and 2×MVA, respectively), and further to 45.6 (week 6, 2×MVA after second vaccination). In HSPX, nAb GMT rapidly increased from 21.6 (baseline) to 175.1 (week 2). At 2 years, GMTs for 1×MVA, 2×MVA, and HSPX were 1.1, 1.3, and 10.3, respectively. After boosting in the previously naive groups, nAb GMTs increased rapidly in 2 weeks to 80.7 (1×MVA) and 125.3 (2×MVA), higher than after primary vaccination and comparable to boosted HSPX subjects. Six months after boosting, GMTs were 25.6 (1×MVA) and 49.3 (2×MVA). No safety concerns were identified. CONCLUSIONS: Anamnestic responses to boosting without sustained high nAb titers support presence of durable immunological memory following primary MVA-BN immunization. Clinical Trials Registration. NCT00316524 and NCT00686582.


Asunto(s)
Vacuna contra Viruela , Viruela , Vaccinia , Humanos , Viruela/prevención & control , Anticuerpos Antivirales , Virus Vaccinia , Vacunación , Anticuerpos Neutralizantes
3.
Vaccines (Basel) ; 10(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35891170

RESUMEN

Marburg virus (MARV) is a negative-sense, single-stranded RNA virus that belongs to the Filoviridae family. Despite having caused numerous outbreaks of severe hemorrhagic fever with high case fatality rates, there are still no clinically approved therapeutics or vaccines to treat or prevent MARV disease. Recombinant vesicular stomatitis viruses (rVSVs) expressing heterologous viral glycoproteins have shown remarkable promise as live-attenuated vaccine vectors, with an rVSV-based Ebola virus vaccine having received regulatory approval in the United States and numerous other countries. Analogous rVSV vaccine vectors have also been developed for MARV and have shown efficacy in several preclinical studies conducted in nonhuman primates. Here, we used a guinea pig model to confirm the protective efficacy of a cloned, rVSV-based candidate vaccine, termed PHV01, expressing the MARV variant Angola glycoprotein. Our results demonstrated that a single dose (2 × 106 PFU) of vaccine administered 28 days prior to challenge with a uniformly lethal dose of guinea-pig-adapted MARV variant Angola provided complete protection from death and disease. Moreover, protection was robust, with as little as 200 PFU of vaccine conferring significant protection. Not only does this study highlight the potential predictive value of the guinea pig model in the evaluation of MARV countermeasures, but it also demonstrates consistent and reproducible protection afforded by a clonal vaccine candidate. Indeed, this study identifies PHV01 as a suitable vaccine candidate for advanced development.

4.
Am J Trop Med Hyg ; 104(5): 1751-1754, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782211

RESUMEN

Gamma irradiation (GI) is included in the CDC guidance on inactivation procedures to render a group of select agents and toxins nonviable. The Ebola virus falls within this group because it potentially poses a severe threat to public health and safety. To evaluate the impact of GI at a target dose of 50 kGy on neutralizing antibody titers induced by the rVSVΔG-ZEBOV-GP vaccine (V920), we constructed a panel of 48 paired human serum samples (GI-treated versus non-GI-treated) from healthy participants selected from a phase 3 study of V920 (study V920-012; NCT02503202). Neutralizing antibody titers were determined using a validated plaque-reduction neutralization test. GI of sera from V920 recipients was associated with approximately 20% reduction in postvaccination neutralizing antibody titers. GI was not associated with any change in pre-vaccination neutralizing antibody titers.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Sueros Inmunes/efectos de la radiación , Anticuerpos Neutralizantes/análisis , Vacunas contra el Virus del Ébola/síntesis química , Ebolavirus/patogenicidad , Voluntarios Sanos , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Sueros Inmunes/química , Inmunogenicidad Vacunal , Pruebas de Neutralización , Estudios Prospectivos , Vacunación/métodos , Vesiculovirus/química , Vesiculovirus/inmunología , Proteínas del Envoltorio Viral/inmunología
5.
Vaccine ; 38(31): 4885-4891, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32499064

RESUMEN

The recombinant vesicular stomatitis virus - Zaire Ebola virus envelope glycoprotein (rVSVΔG-ZEBOV-GP) vaccine is a live recombinant vesicular stomatitis virus (VSV) where the VSV G protein is replaced with ZEBOV-GP. To better understand the immune response after receiving the rVSVΔG-ZEBOV-GP vaccine, the current analyses evaluated different definitions of seroresponse that differentiate vaccine and placebo recipients enrolled in a placebo-controlled clinical trial (PREVAIL; NCT02344407) in which a subset of the study participants had elevated baseline titers. Alternative values for serostatus cutoff (SSCO; 200-500 EU/mL) and/or fold rise (two- to five-fold) were applied to compare their ability to distinguish between participants receiving rVSVΔG-ZEBOV-GP or placebo. The results indicate that an SSCO of 200 EU/mL can be used to define seropositivity at baseline (i.e. pre-vaccination). The use of dual criteria of the same SSCO (200 EU/mL) together with a two-fold rise in antibody level from baseline provided the definition of seroresponse that maximized the statistical significance between vaccine recipients and placebo recipients post-vaccination. Clinical trial registration: NCT02344407.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Estomatitis Vesicular , Animales , Anticuerpos Antivirales , República Democrática del Congo , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Envoltura Viral
6.
J Infect Dis ; 220(7): 1127-1135, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31505665

RESUMEN

BACKGROUND: This double-blind study assessed immunogenicity, lot consistency, and safety of recombinant vesicular stomatitis virus-Zaire Ebola virus envelope glycoprotein vaccine (rVSVΔG-ZEBOV-GP). METHODS: Healthy adults (N = 1197) were randomized 2:2:2:2:1 to receive 1 of 3 consistency lots of rVSVΔG-ZEBOV-GP (2 × 107 plaque-forming units [pfu]), high-dose 1 × 108 pfu, or placebo. Antibody responses pre-/postvaccination (28 days, 6 months; in a subset [n = 566], months 12, 18, and 24) were measured. post hoc analysis of risk factors associated with arthritis following vaccination was performed. RESULTS: ZEBOV-GP enzyme-linked immunosorbent assay (ELISA) geometric mean titers (GMTs) increased postvaccination in all rVSVΔG-ZEBOV-GP groups by 28 days (>58-fold) and persisted through 24 months. The 3 manufacturing lots demonstrated equivalent immunogenicity at 28 days. Neutralizing antibody GMTs increased by 28 days in all rVSVΔG-ZEBOV-GP groups, peaking at 18 months with no decrease through 24 months. At 28 days, ≥94% of vaccine recipients seroresponded (ZEBOV-GP ELISA, ≥2-fold increase, titer ≥200 EU/mL), with responses persisting at 24 months in ≥91%. Female sex and a history of arthritis were identified as potential risk factors for the development of arthritis postvaccination. CONCLUSIONS: Immune responses to rVSVΔG-ZEBOV-GP persisted to 24 months. Immunogenicity and safety results support continued rVSVΔG-ZEBOV-GP development. CLINICAL TRIALS REGISTRATION: NCT02503202.


Asunto(s)
Vacunas contra el Virus del Ébola/efectos adversos , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Inmunogenicidad Vacunal/inmunología , Vacunación , Adulto , Anticuerpos Neutralizantes/análisis , Anticuerpos Antivirales/análisis , Método Doble Ciego , Vacunas contra el Virus del Ébola/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Voluntarios Sanos , Fiebre Hemorrágica Ebola/virología , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Resultado del Tratamiento , Proteínas del Envoltorio Viral/inmunología
7.
Am J Trop Med Hyg ; 101(1): 207-213, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31162004

RESUMEN

rVSVΔG-ZEBOV-GP vaccine is a live recombinant (r) vesicular stomatitis virus (VSV), where the VSV G protein is replaced with the Zaire Ebola virus (ZEBOV) glycoprotein (GP). For vaccine immunogenicity testing, clinical trial sera collected during an active ZEBOV outbreak underwent gamma irradiation (GI) before testing in biosafety level 2 laboratories to inactivate possible wild-type ZEBOV. Before irradiating pivotal trial samples, two independent studies evaluated the impact of GI (50 kGy) on binding ZEBOV-GP (ELISA) antibodies against rVSVΔG-ZEBOV-GP, using sera from a North American phase 1 study. Gamma irradiation was associated with slightly higher antibody concentrations in pre-vaccination samples and slightly lower concentrations postvaccination. Results indicate that GI is a viable method for treating samples from regions where filoviruses are endemic, with minor effects on antibody titers. The impact of GI on immunogenicity analyses should be considered when interpreting data from irradiated specimens.


Asunto(s)
Anticuerpos Antivirales/efectos de la radiación , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/metabolismo , Rayos gamma , Suero/efectos de la radiación , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/fisiología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Glicoproteínas de Membrana , Vacunación , Vacunas Sintéticas/inmunología , Proteínas del Envoltorio Viral/inmunología
8.
Vaccine ; 35(35 Pt A): 4465-4469, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28647166

RESUMEN

The 2014-2016 Ebola outbreak caused over 28,000 cases and 11,000 deaths. Merck & Co. Inc., Kenilworth, NJ USA and NewLink Genetics are working with private and public partners to develop and license an Ebola vaccine that was evaluated extensively during the outbreak. The vaccine referred to as V920 is a recombinant vesicular stomatitis virus (rVSV) in which the VSV-G envelope glycoprotein (GP) is completely replaced by the Zaire ebolavirus GP (rVSVΔG-ZEBOV-GP). Eight Phase I and four Phase II/III clinical trials enrolling approximately 17,000 subjects were conducted in parallel to the outbreak to assess the safety, immunogenicity, and/or efficacy of V920. Immunogenicity data demonstrate that anti-GP antibodies are generally detectable by ELISA by 14days postvaccination with up to 100% seroconversion observed by 28days post dose. In addition, the results of a ring vaccination trial conducted by the WHO and their partners in Guinea suggest robust vaccine efficacy within 10days of receipt of a single dose of vaccine. The vaccine is generally well-tolerated when administered to healthy, non-pregnant adults. The development of this vaccine candidate in the context of this unprecedented epidemic has involved the close cooperation of large number of international partners and highlights what we as a public health community can accomplish when working together towards a common goal. Study identification: V920-001 to V920-012. CLINICALTRIALS.GOV identifiers: NCT02269423; NCT02280408; NCT02374385; NCT02314923; NCT02287480; NCT02283099; NCT02296983; NCT02344407; NCT02378753; NCT02503202.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Epidemias/prevención & control , Fiebre Hemorrágica Ebola/prevención & control , Proteínas del Envoltorio Viral/genética , Adolescente , Adulto , África/epidemiología , Niño , Ensayos Clínicos como Asunto , Ebolavirus/genética , Europa (Continente)/epidemiología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/mortalidad , Fiebre Hemorrágica Ebola/terapia , Humanos , Inmunogenicidad Vacunal , Resultado del Tratamiento , Estados Unidos/epidemiología , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/inmunología , Vesiculovirus/genética , Vesiculovirus/inmunología , Proteínas del Envoltorio Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...