Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicology ; 452: 152719, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33592259

RESUMEN

Organophosphorus compounds (OPs) include nerve agents and insecticides that potently inhibit acetylcholinesterase (AChE), an essential enzyme found throughout the nervous system. High exposure levels to OPs lead to seizures, cardiac arrest, and death if left untreated. Oximes are a critical piece to the therapeutic regimen which remove the OP from the inhibited AChE and restore normal cholinergic function. The current oximes 2-PAM, MMB-4, TMB-4, HI-6, and obidoxime (OBD) have two drawbacks: lack of broad spectrum protection against multiple OP structures and poor brain penetration to protect against OP central neurotoxicity. An alternative strategy to enhance therapy is reactivation of serum butyrylcholinesterase (BChE). BChE is stoichiometrically inhibited by OPs with no apparent toxic result. Inhibition of BChE in the serum followed by reactivation could create a pseudo-catalytic scavenger allowing numerous regenerations of BChE to detoxify circulating OP molecules before they can reach target AChE. BChE in serum from rats, guinea pigs or humans was screened for the reactivation potential of our novel substituted phenoxyalkyl pyridinium oximes, plus 2-PAM, MMB-4, TMB-4, HI-6, and OBD (100µM) in vitro after inhibition by highly relevant surrogates of sarin, VX, and cyclosarin, and also DFP, and the insecticidal active metabolites paraoxon, phorate-oxon, and phorate-oxon sulfoxide. Novel oxime 15 demonstrated significant broad spectrum reactivation of OP-inhibited rat serum BChE while novel oxime 20 demonstrated significant broad spectrum reactivation of OP-inhibited human serum BChE. All tested oximes were poor reactivators of OP-inhibited guinea pig serum BChE. The bis-pyridinium oximes were poor BChE reactivators overall. BChE reactivation may be an additional mechanism to attenuate OP toxicity and contribute to therapeutic efficacy.


Asunto(s)
Butirilcolinesterasa/sangre , Inhibidores de la Colinesterasa/toxicidad , Agentes Nerviosos/toxicidad , Organofosfatos/toxicidad , Oximas/farmacología , Compuestos de Piridinio/farmacología , Animales , Cobayas , Humanos , Oximas/química , Compuestos de Piridinio/química , Ratas
2.
Clin Toxicol (Phila) ; 54(6): 501-11, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27002734

RESUMEN

CONTEXT: Diethylene glycol (DEG) has caused many cases of acute kidney injury and deaths worldwide. Diglycolic acid (DGA) is the metabolite responsible for the renal toxicity, but its toxic mechanism remains unclear. OBJECTIVE: To characterize the mitochondrial dysfunction produced from DGA by examining several mitochondrial processes potentially contributing to renal cell toxicity. MATERIALS AND METHODS: The effect of DGA on mitochondrial membrane potential was examined in normal human proximal tubule (HPT) cells. Isolated rat kidney mitochondria were used to assess the effects of DGA on mitochondrial function, including respiratory parameters (States 3 and 4), electron transport chain complex activities and calcium-induced opening of the mitochondrial permeability transition pore. DGA was compared with ethylene glycol tetraacetic acid (EGTA) to determine calcium chelating ability. DGA cytotoxicity was assessed using lactate dehydrogenase leakage from cultured proximal tubule cells. RESULTS: DGA decreased the mitochondrial membrane potential in HPT cells. In rat kidney mitochondria, DGA decreased State 3 respiration, but did not affect State 4 respiration or the ADP/O ratio. DGA reduced glutamate/malate respiration at lower DGA concentrations (0.5 mmol/L) than succinate respiration (100 mmol/L). DGA inhibited Complex II activity without altering Complex I, III or IV activities. DGA blocked calcium-induced mitochondrial swelling, indicating inhibition of the calcium-dependent mitochondrial permeability transition. DGA and EGTA reduced the free calcium concentration in solution in an equimolar manner. DGA toxicity and mitochondrial dysfunction occurred as similar concentrations. DISCUSSION: DGA inhibited mitochondrial respiration, but without uncoupling oxidative phosphorylation. The more potent effect of DGA on glutamate/malate respiration and the inhibition of mitochondrial swelling was likely due to its chelation of calcium. CONCLUSION: These results indicate that DGA produces mitochondrial dysfunction by chelating calcium to decrease the availability of substrates and of reducing equivalents to access Complex I and by inhibiting Complex II activity at higher concentrations.


Asunto(s)
Lesión Renal Aguda/patología , Calcio/química , Quelantes/toxicidad , Glicoles de Etileno/toxicidad , Glicolatos/toxicidad , Mitocondrias/efectos de los fármacos , Lesión Renal Aguda/inducido químicamente , Animales , Células Cultivadas , Quelantes/química , Ácido Egtácico/química , Glicoles de Etileno/química , Ácido Glutámico/metabolismo , Glicolatos/química , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Riñón/patología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , L-Lactato Deshidrogenasa/metabolismo , Malatos/metabolismo , Masculino , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Fosforilación Oxidativa/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA