Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Integr Bioinform ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613325

RESUMEN

Modern biological research is increasingly informed by computational simulation experiments, which necessitate the development of methods for annotating, archiving, sharing, and reproducing the conducted experiments. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments. SED-ML is a computer-readable format for the information outlined by MIASE, created as a community project and supported by many investigators and software tools. Level 1 Version 5 of SED-ML expands the ability of modelers to define simulations in SED-ML using the Kinetic Simulation Algorithm Onotoloy (KiSAO). While it was possible in Version 4 to define a simulation entirely using KiSAO, Version 5 now allows users to define tasks, model changes, ranges, and outputs using the ontology as well. SED-ML is supported by a growing ecosystem of investigators, model languages, and software tools, including various languages for constraint-based, kinetic, qualitative, rule-based, and spatial models, and many simulation tools, visual editors, model repositories, and validators. Additional information about SED-ML is available at https://sed-ml.org/.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38083471

RESUMEN

Clinical translation of personalised computational physiology workflows and digital twins can revolutionise healthcare by providing a better understanding of an individual's physiological processes and any changes that could lead to serious health consequences. However, the lack of common infrastructure for developing these workflows and digital twins has hampered the realisation of this vision. The Auckland Bioengineering Institute's 12 LABOURS project aims to address these challenges by developing a Digital Twin Platform to enable researchers to develop and personalise computational physiology models to an individual's health data in clinical workflows. This will allow clinical trials to be more efficiently conducted to demonstrate the efficacy of these personalised clinical workflows. We present a demonstration of the platform's capabilities using publicly available data and an existing automated computational physiology workflow developed to assist clinicians with diagnosing and treating breast cancer. We also demonstrate how the platform facilitates the discovery and exploration of data and the presentation of workflow results as part of clinical reports through a web portal. Future developments will involve integrating the platform with health systems and remote-monitoring devices such as wearables and implantables to support home-based healthcare. Integrating outputs from multiple workflows that are applied to the same individual's health data will also enable the generation of their personalised digital twin.Clinical Relevance- The proposed 12 LABOURS Digital Twin Platform will enable researchers to 1) more efficiently conduct clinical trials to assess the efficacy of their computational physiology workflows and support the clinical translation of their research; 2) reuse primary and derived data from these workflows to generate novel workflows; and 3) generate personalised digital twins by integrating the outputs of different computational physiology workflows.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Flujo de Trabajo
3.
F1000Res ; 12: 162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842339

RESUMEN

The Transformer-based approaches to solving natural language processing (NLP) tasks such as BERT and GPT are gaining popularity due to their ability to achieve high performance. These approaches benefit from using enormous data sizes to create pre-trained models and the ability to understand the context of words in a sentence. Their use in the information retrieval domain is thought to increase effectiveness and efficiency. This paper demonstrates a BERT-based method (CASBERT) implementation to build a search tool over data annotated compositely using ontologies. The data was a collection of biosimulation models written using the CellML standard in the Physiome Model Repository (PMR). A biosimulation model structurally consists of basic entities of constants and variables that construct higher-level entities such as components, reactions, and the model. Finding these entities specific to their level is beneficial for various purposes regarding variable reuse, experiment setup, and model audit. Initially, we created embeddings representing compositely-annotated entities for constant and variable search (lowest level entity). Then, these low-level entity embeddings were vertically and efficiently combined to create higher-level entity embeddings to search components, models, images, and simulation setups. Our approach was general, so it can be used to create search tools with other data semantically annotated with ontologies - biosimulation models encoded in the SBML format, for example. Our tool is named Biosimulation Model Search Engine (BMSE).


Asunto(s)
Almacenamiento y Recuperación de la Información , Motor de Búsqueda , Simulación por Computador , Procesamiento de Lenguaje Natural
4.
Front Bioinform ; 3: 1107467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865672

RESUMEN

Maximising FAIRness of biosimulation models requires a comprehensive description of model entities such as reactions, variables, and components. The COmputational Modeling in BIology NEtwork (COMBINE) community encourages the use of Resource Description Framework with composite annotations that semantically involve ontologies to ensure completeness and accuracy. These annotations facilitate scientists to find models or detailed information to inform further reuse, such as model composition, reproduction, and curation. SPARQL has been recommended as a key standard to access semantic annotation with RDF, which helps get entities precisely. However, SPARQL is unsuitable for most repository users who explore biosimulation models freely without adequate knowledge of ontologies, RDF structure, and SPARQL syntax. We propose here a text-based information retrieval approach, CASBERT, that is easy to use and can present candidates of relevant entities from models across a repository's contents. CASBERT adapts Bidirectional Encoder Representations from Transformers (BERT), where each composite annotation about an entity is converted into an entity embedding for subsequent storage in a list of entity embeddings. For entity lookup, a query is transformed to a query embedding and compared to the entity embeddings, and then the entities are displayed in order based on their similarity. The list structure makes it possible to implement CASBERT as an efficient search engine product, with inexpensive addition, modification, and insertion of entity embedding. To demonstrate and test CASBERT, we created a dataset for testing from the Physiome Model Repository and a static export of the BioModels database consisting of query-entities pairs. Measured using Mean Average Precision and Mean Reciprocal Rank, we found that our approach can perform better than the traditional bag-of-words method.

5.
J Integr Bioinform ; 20(1)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36989443

RESUMEN

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.1, SBML Level 3 Package: Spatial Processes, Version 1, Release 1, and Synthetic Biology Open Language (SBOL) Version 3.1.0. This document can also be used to identify the latest specifications for all COMBINE standards. In addition, this editorial provides a brief overview of the COMBINE 2022 meeting in Berlin.


Asunto(s)
Biología Computacional , Biología Sintética , Lenguajes de Programación , Programas Informáticos
6.
PLoS One ; 17(11): e0275837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36355848

RESUMEN

We review a collection of published renal epithelial transport models, from which we build a consistent and reusable mathematical model able to reproduce many observations and predictions from the literature. The flexible modular model we present here can be adapted to specific configurations of epithelial transport, and in this work we focus on transport in the proximal convoluted tubule of the renal nephron. Our mathematical model of the epithelial proximal convoluted tubule describes the cellular and subcellular mechanisms of the transporters, intracellular buffering, solute fluxes, and other processes. We provide free and open access to the Python implementation to ensure our multiscale proximal tubule model is accessible; enabling the reader to explore the model through setting their own simulations, reproducibility tests, and sensitivity analyses.


Asunto(s)
Túbulos Renales Proximales , Nefronas , Reproducibilidad de los Resultados , Túbulos Renales Proximales/metabolismo , Riñón , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico
7.
Math Biosci ; 352: 108901, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096376

RESUMEN

The Systems Biology Markup Language (SBML) is a popular software-independent XML-based format for describing models of biological phenomena. The BioModels Database is the largest online repository of SBML models. Several tools and platforms are available to support the reuse and composition of SBML models. However, these tools do not explicitly assess whether models are physically plausible or thermodynamically consistent. This often leads to ill-posed models that are physically impossible, impeding the development of realistic complex models in biology. Here, we present a framework that can automatically convert SBML models into bond graphs, which imposes energy conservation laws on these models. The new bond graph models are easily mergeable, resulting in physically plausible coupled models. We illustrate this by automatically converting and coupling a model of pyruvate distribution to a model of the pentose phosphate pathway.


Asunto(s)
Lenguajes de Programación , Biología de Sistemas , Documentación , Lenguaje , Modelos Biológicos , Piruvatos , Programas Informáticos , Biología de Sistemas/métodos
8.
Front Physiol ; 13: 965054, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176770

RESUMEN

While ion channels and transporters involved in excitation-contraction coupling have been linked and constructed as comprehensive computational models, validation of whether each individual component of a model can be reused has not been previously attempted. Here we address this issue while using a novel modular modeling approach to investigate the underlying mechanism for the differences between left ventricle (LV) and right ventricle (RV). Our model was developed from modules constructed using the module assembly principles of the CellML model markup language. The components of three existing separate models of cardiac function were disassembled as to create smaller modules, validated individually, and then the component parts were combined into a new integrative model of a rat ventricular myocyte. The model was implemented in OpenCOR using the CellML standard in order to ensure reproducibility. Simulated action potential (AP), Ca2+ transient, and tension were in close agreement with our experimental measurements: LV AP showed a prolonged duration and a more prominent plateau compared with RV AP; Ca2+ transient showed prolonged duration and slow decay in LV compared to RV; the peak value and relaxation of tension were larger and slower, respectively, in LV compared to RV. Our novel approach of module-based mathematical modeling has established that the ionic mechanisms underlying the APs and Ca2+ handling play a role in the variation in force production between ventricles. This simulation process also provides a useful way to reuse and elaborate upon existing models in order to develop a new model.

9.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35671510

RESUMEN

Computational models are often employed in systems biology to study the dynamic behaviours of complex systems. With the rise in the number of computational models, finding ways to improve the reusability of these models and their ability to reproduce virtual experiments becomes critical. Correct and effective model annotation in community-supported and standardised formats is necessary for this improvement. Here, we present recent efforts toward a common framework for annotated, accessible, reproducible and interoperable computational models in biology, and discuss key challenges of the field.


Asunto(s)
Biología Computacional , Biología de Sistemas , Simulación por Computador , Reproducibilidad de los Resultados
10.
PLoS One ; 17(6): e0269497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35657966

RESUMEN

Hierarchical modelling is essential to achieving complex, large-scale models. However, not all modelling schemes support hierarchical composition, and correctly mapping points of connection between models requires comprehensive knowledge of each model's components and assumptions. To address these challenges in integrating biosimulation models, we propose an approach to automatically and confidently compose biosimulation models. The approach uses bond graphs to combine aspects of physical and thermodynamics-based modelling with biological semantics. We improved on existing approaches by using semantic annotations to automate the recognition of common components. The approach is illustrated by coupling a model of the Ras-MAPK cascade to a model of the upstream activation of EGFR. Through this methodology, we aim to assist researchers and modellers in readily having access to more comprehensive biological systems models.


Asunto(s)
Semántica , Programas Informáticos , Termodinámica
11.
Nucleic Acids Res ; 50(W1): W108-W114, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524558

RESUMEN

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.


Asunto(s)
Simulación por Computador , Programas Informáticos , Humanos , Bioingeniería , Modelos Biológicos , Sistema de Registros , Investigadores
12.
Front Physiol ; 13: 820683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283794

RESUMEN

Semantic annotation is a crucial step to assure reusability and reproducibility of biosimulation models in biology and physiology. For this purpose, the COmputational Modeling in BIology NEtwork (COMBINE) community recommends the use of the Resource Description Framework (RDF). This grounding in RDF provides the flexibility to enable searching for entities within models (e.g., variables, equations, or entire models) by utilizing the RDF query language SPARQL. However, the rigidity and complexity of the SPARQL syntax and the nature of the tree-like structure of semantic annotations, are challenging for users. Therefore, we propose NLIMED, an interface that converts natural language queries into SPARQL. We use this interface to query and discover model entities from repositories of biosimulation models. NLIMED works with the Physiome Model Repository (PMR) and the BioModels database and potentially other repositories annotated using RDF. Natural language queries are first "chunked" into phrases and annotated against ontology classes and predicates utilizing different natural language processing tools. Then, the ontology classes and predicates are composed as SPARQL and finally ranked using our SPARQL Composer and our indexing system. We demonstrate that NLIMED's approach for chunking and annotating queries is more effective than the NCBO Annotator for identifying relevant ontology classes in natural language queries.Comparison of NLIMED's behavior against historical query records in the PMR shows that it can adapt appropriately to queries associated with well-annotated models.

13.
Front Physiol ; 12: 699152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950044

RESUMEN

It has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake via SGLT1 and GLUT2, basolateral efflux into the blood via GLUT2, and cellular volume changes in response to non-isotonic conditions. The dependence of glucose absorption on luminal glucose, blood flow rate, and inlet blood glucose concentration is studied. Uptake via apical GLUT2 is found to be sensitive to all these factors. Under a range of conditions, the maximum apical GLUT2 flux is about half of the SGLT1 flux and is achieved at high luminal glucose (> 50 mM), high blood flow rates, and low inlet blood concentrations. In contrast, SGLT1 flux is less sensitive to these factors. When luminal glucose concentration is less than 10 mM, apical GLUT2 serves as an efflux pathway for glucose to move from the blood to the lumen. The model results indicate that translocation of GLUT2 from the basolateral to the apical membrane increases glucose uptake into the cell; however, the reduction of efflux capacity results in a decrease in net absorption. Recruitment of GLUT2 from a cytosolic pool elicits a 10-20% increase in absorption for luminal glucose levels in the a 20-100 mM range. Increased SGLT1 activity also leads to a roughly 20% increase in absorption. A concomitant increase in blood supply results in a larger increase in absorption. Increases in apical glucose transporter activity help to minimise cell volume changes by reducing the osmotic gradient between the cell and the lumen.

14.
J Integr Bioinform ; 18(3)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34668356

RESUMEN

A standardized approach to annotating computational biomedical models and their associated files can facilitate model reuse and reproducibility among research groups, enhance search and retrieval of models and data, and enable semantic comparisons between models. Motivated by these potential benefits and guided by consensus across the COmputational Modeling in BIology NEtwork (COMBINE) community, we have developed a specification for encoding annotations in Open Modeling and EXchange (OMEX)-formatted archives. This document details version 1.2 of the specification, which builds on version 1.0 published last year in this journal. In particular, this version includes a set of initial model-level annotations (whereas v 1.0 described exclusively annotations at a smaller scale). Additionally, this version uses best practices for namespaces, and introduces omex-library.org as a common root for all annotations. Distributing modeling projects within an OMEX archive is a best practice established by COMBINE, and the OMEX metadata specification presented here provides a harmonized, community-driven approach for annotating a variety of standardized model representations. This specification acts as a technical guideline for developing software tools that can support this standard, and thereby encourages broad advances in model reuse, discovery, and semantic analyses.


Asunto(s)
Metadatos , Programas Informáticos , Biología Computacional , Reproducibilidad de los Resultados , Semántica
15.
J Integr Bioinform ; 18(3)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34674411

RESUMEN

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.0, Simulation Experiment Description Markup Language Level 1 Version 4, and OMEX Metadata specification Version 1.2. This document can also be consulted to identify the latest specifications of all COMBINE standards.


Asunto(s)
Biología Computacional , Biología Sintética , Simulación por Computador , Metadatos , Lenguajes de Programación , Programas Informáticos
16.
Front Physiol ; 12: 693735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248680

RESUMEN

The Data and Resource Center (DRC) of the NIH-funded SPARC program is developing databases, connectivity maps, and simulation tools for the mammalian autonomic nervous system. The experimental data and mathematical models supplied to the DRC by the SPARC consortium are curated, annotated and semantically linked via a single knowledgebase. A data portal has been developed that allows discovery of data and models both via semantic search and via an interface that includes Google Map-like 2D flatmaps for displaying connectivity, and 3D anatomical organ scaffolds that provide a common coordinate framework for cross-species comparisons. We discuss examples that illustrate the data pipeline, which includes data upload, curation, segmentation (for image data), registration against the flatmaps and scaffolds, and finally display via the web portal, including the link to freely available online computational facilities that will enable neuromodulation hypotheses to be investigated by the autonomic neuroscience community and device manufacturers.

17.
Bioinformatics ; 37(24): 4898-4900, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34132740

RESUMEN

SUMMARY: As the number and complexity of biosimulation models grows, so do demands for tools that can help users better understand models and make those models more findable, shareable and reproducible. Consistent model annotation is a step toward these goals. Both models and tools are written in a variety of different languages; thus, the community has recognized the need for standard, language-independent methods for annotation. Based on the Computational Modeling in Biology Network community consensus, we introduce an open-source, cross-platform software library for semantic annotation of models. AVAILABILITY AND IMPLEMENTATION: libOmexMeta is freely available at https://github.com/sys-bio/libOmexMeta under the Apache License 2.0. A live demonstration is at github.com/sys-bio/pyomexmeta-binder-notebook. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Semántica , Programas Informáticos , Simulación por Computador , Lenguaje , Consenso
18.
PLoS Comput Biol ; 17(5): e1008859, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33983945

RESUMEN

Simulating complex biological and physiological systems and predicting their behaviours under different conditions remains challenging. Breaking systems into smaller and more manageable modules can address this challenge, assisting both model development and simulation. Nevertheless, existing computational models in biology and physiology are often not modular and therefore difficult to assemble into larger models. Even when this is possible, the resulting model may not be useful due to inconsistencies either with the laws of physics or the physiological behaviour of the system. Here, we propose a general methodology for composing models, combining the energy-based bond graph approach with semantics-based annotations. This approach improves model composition and ensures that a composite model is physically plausible. As an example, we demonstrate this approach to automated model composition using a model of human arterial circulation. The major benefit is that modellers can spend more time on understanding the behaviour of complex biological and physiological systems and less time wrangling with model composition.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Arterias/anatomía & histología , Arterias/fisiología , Circulación Sanguínea/fisiología , Biología Computacional , Gráficos por Computador , Humanos , Modelos Cardiovasculares , Semántica , Programas Informáticos
19.
Endocrinol Diabetes Metab ; 4(1): e00169, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33532611

RESUMEN

The IWGDF 2019 Updated Guidelines for prevention of foot ulcers in diabetes advise that nerve decompression surgery not be considered. This nerve decompression option has similar scientific supporting evidence to other surgeries which are recommended. The sanction ignores a large body of non-Level 1 evidence demonstrating various beneficial outcomes of ND including pain relief, DFU prevention, and protection from recurrence and amputation.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Úlcera del Pie , Amputación Quirúrgica , Humanos , Recurrencia , Úlcera
20.
J Integr Bioinform ; 18(3): 20210021, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35330701

RESUMEN

Computational simulation experiments increasingly inform modern biological research, and bring with them the need to provide ways to annotate, archive, share and reproduce the experiments performed. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments. SED-ML is a computer-readable format for the information outlined by MIASE, created as a community project and supported by many investigators and software tools. The first versions of SED-ML focused on deterministic and stochastic simulations of models. Level 1 Version 4 of SED-ML substantially expands these capabilities to cover additional types of models, model languages, parameter estimations, simulations and analyses of models, and analyses and visualizations of simulation results. To facilitate consistent practices across the community, Level 1 Version 4 also more clearly describes the use of SED-ML constructs, and includes numerous concrete validation rules. SED-ML is supported by a growing ecosystem of investigators, model languages, and software tools, including eight languages for constraint-based, kinetic, qualitative, rule-based, and spatial models, over 20 simulation tools, visual editors, model repositories, and validators. Additional information about SED-ML is available at https://sed-ml.org/.


Asunto(s)
Lenguaje , Lenguajes de Programación , Ecosistema , Modelos Biológicos , Biología de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...