Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Microbiol Spectr ; 9(1): e0000321, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34106568

RESUMEN

Gastrointestinal infections cause significant morbidity and mortality worldwide. The complexity of human biology and limited insights into host-specific infection mechanisms are key barriers to current therapeutic development. Here, we demonstrate that two-dimensional epithelial monolayers derived from human intestinal organoids, combined with in vivo-like bacterial culturing conditions, provide significant advancements for the study of enteropathogens. Monolayers from the terminal ileum, cecum, and ascending colon recapitulated the composition of the gastrointestinal epithelium, in which several techniques were used to detect the presence of enterocytes, mucus-producing goblet cells, and other cell types following differentiation. Importantly, the addition of receptor activator of nuclear factor kappa-B ligand (RANKL) increased the presence of M cells, critical antigen-sampling cells often exploited by enteric pathogens. For infections, bacteria were grown under in vivo-like conditions known to induce virulence. Overall, interesting patterns of tissue tropism and clinical manifestations were observed. Shigella flexneri adhered efficiently to the cecum and colon; however, invasion in the colon was best following RANKL treatment. Both Salmonella enterica serovars Typhi and Typhimurium displayed different infection patterns, with S. Typhimurium causing more destruction of the terminal ileum and S. Typhi infecting the cecum more efficiently than the ileum, particularly with regard to adherence. Finally, various pathovars of Escherichia coli validated the model by confirming only adherence was observed with these strains. This work demonstrates that the combination of human-derived tissue with targeted bacterial growth conditions enables powerful analyses of human-specific infections that could lead to important insights into pathogenesis and accelerate future vaccine development. IMPORTANCE While traditional laboratory techniques and animal models have provided valuable knowledge in discerning virulence mechanisms of enteric pathogens, the complexity of the human gastrointestinal tract has hindered our understanding of physiologically relevant, human-specific interactions; and thus, has significantly delayed successful vaccine development. The human intestinal organoid-derived epithelial monolayer (HIODEM) model closely recapitulates the diverse cell populations of the intestine, allowing for the study of human-specific infections. Differentiation conditions permit the expansion of various cell populations, including M cells that are vital to immune recognition and the establishment of infection by some bacteria. We provide details of reproducible culture methods and infection conditions for the analyses of Shigella, Salmonella, and pathogenic Escherichia coli in which tissue tropism and pathogen-specific infection patterns were detected. This system will be vital for future studies that explore infection conditions, health status, or epigenetic differences and will serve as a novel screening platform for therapeutic development.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Infecciones por Enterobacteriaceae/microbiología , Enterobacteriaceae/fisiología , Tracto Gastrointestinal/microbiología , Organoides/microbiología , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidad , Enterocitos/microbiología , Células Epiteliales/citología , Células Epiteliales/microbiología , Epitelio/microbiología , Tracto Gastrointestinal/citología , Humanos , Organoides/citología , Virulencia
2.
mBio ; 11(6)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203761

RESUMEN

The mechanism of protection against cholera afforded by previous illness or vaccination is currently unknown. We have recently shown that antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae correlate highly with protection against cholera. V. cholerae is highly motile and possesses a flagellum sheathed in OSP, and motility of V. cholerae correlates with virulence. Using high-speed video microscopy and building upon previous animal-related work, we demonstrate that sera, polyclonal antibody fractions, and OSP-specific monoclonal antibodies recovered from humans surviving cholera block V. cholerae motility at both subagglutinating and agglutinating concentrations. This antimotility effect is reversed by preadsorbing sera and polyclonal antibody fractions with purified OSP and is associated with OSP-specific but not flagellin-specific monoclonal antibodies. Fab fragments of OSP-specific polyclonal antibodies do not inhibit motility, suggesting a requirement for antibody-mediated cross-linking in motility inhibition. We show that OSP-specific antibodies do not directly affect V. cholerae viability, but that OSP-specific monoclonal antibody highly protects against death in the murine cholera model. We used in vivo competitive index studies to demonstrate that OSP-specific antibodies impede colonization and survival of V. cholerae in intestinal tissues and that this impact is motility dependent. Our findings suggest that the impedance of motility by antibodies targeting V. cholerae OSP contributes to protection against cholera.IMPORTANCE Cholera is a severe dehydrating illness of humans caused by Vibrio choleraeV. cholerae is a highly motile bacterium that has a single flagellum covered in lipopolysaccharide (LPS) displaying O-specific polysaccharide (OSP), and V. cholerae motility correlates with its ability to cause disease. The mechanisms of protection against cholera are not well understood; however, since V. cholerae is a noninvasive intestinal pathogen, it is likely that antibodies that bind the pathogen or its products in the intestinal lumen contribute to protection from infection. Here, we demonstrate that OSP-specific antibodies isolated from humans surviving cholera in Bangladesh inhibit V. cholerae motility and are associated with protection against challenge in a motility-dependent manner.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Cólera/inmunología , Antígenos O/inmunología , Vibrio cholerae/inmunología , Aglutinación , Animales , Animales Lactantes , Bangladesh , Cólera/microbiología , Humanos , Ratones , Vibrio cholerae/patogenicidad
3.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32661122

RESUMEN

Throughout the course of infection, many pathogens encounter bactericidal conditions that threaten the viability of the bacteria and impede the establishment of infection. Bile is one of the most innately bactericidal compounds present in humans, functioning to reduce the bacterial burden in the gastrointestinal tract while also aiding in digestion. It is becoming increasingly apparent that pathogens successfully resist the bactericidal conditions of bile, including bacteria that do not normally cause gastrointestinal infections. This review highlights the ability of Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter (ESKAPE), and other enteric pathogens to resist bile and how these interactions can impact the sensitivity of bacteria to various antimicrobial agents. Given that pathogen exposure to bile is an essential component to gastrointestinal transit that cannot be avoided, understanding how bile resistance mechanisms align with antimicrobial resistance is vital to our ability to develop new, successful therapeutics in an age of widespread and increasing antimicrobial resistance.


Asunto(s)
Antibacterianos/metabolismo , Bacterias/patogenicidad , Bilis/metabolismo , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Humanos , Intestino Delgado/microbiología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Virulencia
4.
Gut Microbes ; 11(3): 526-538, 2020 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31829769

RESUMEN

SALMONELLA ENTERICA: serovar Typhi is the etiologic agent of typhoid fever, a major public health problem in the developing world. Moving toward and adhering to the intestinal epithelium represents key initial steps of infection by S. Typhi. We examined the role of the S. Typhi yrbE gene, which encodes an inner membrane phospholipid transporter, in these interactions with epithelial cells. Disruption of yrbE resulted in elevated expression of flagellin and a hypermotile phenotype. It also significantly reduced the ability of S. Typhi to adhere to the HeLa epithelial cell line and to polarized primary epithelial cells derived from human ileal organoids. Interestingly, the yrbE-deficient strain of S. Typhi induced higher production of interleukin-8 from the primary human ileal epithelial cell monolayers compared to the wild-type bacteria. Deletion of the flagellin gene (fliC) in the yrbE-deficient S. Typhi inhibited motility and attenuated interleukin-8 production, but it did not correct the defect in adhesion. We also disrupted yrbE in S. Typhimurium. In contrast to the results in S. Typhi, the deficiency of yrbE in S. Typhimurium had no significant effect on flagellin expression, motility or adhesion to HeLa cells. Correspondingly, the lack of yrbE also had no effect on association with the intestine or the severity of intestinal inflammation in the mouse model of S. Typhimurium infection. Thus, our results point to an important and serovar-specific role played by yrbE in the early stages of intestinal infection by S. Typhi.


Asunto(s)
Adhesión Bacteriana , Flagelina/genética , Proteínas de Transporte de Membrana/fisiología , Infecciones por Salmonella/microbiología , Salmonella typhi/fisiología , Animales , Proteínas Bacterianas/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Perros , Células Epiteliales/microbiología , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica , Células HeLa , Interacciones Microbiota-Huesped , Humanos , Inflamación/microbiología , Interleucina-8/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Movimiento , Fosfolípidos/metabolismo , Salmonella typhimurium/fisiología , Índice de Severidad de la Enfermedad
5.
mSphere ; 4(6)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31722995

RESUMEN

The Shigella species are Gram-negative, facultative intracellular pathogens that invade the colonic epithelium and cause significant diarrheal disease. Despite extensive research on the pathogen, a comprehensive understanding of how Shigella initiates contact with epithelial cells remains unknown. Shigella maintains many of the same Escherichia coli adherence gene operons; however, at least one critical gene component in each operon is currently annotated as a pseudogene in reference genomes. These annotations, coupled with a lack of structures upon microscopic analysis following growth in laboratory media, have led the field to hypothesize that Shigella is unable to produce fimbriae or other traditional adherence factors. Nevertheless, our previous analyses have demonstrated that a combination of bile salts and glucose induces both biofilm formation and adherence to colonic epithelial cells. The goal of this study was to perform transcriptomic and genetic analyses to demonstrate that adherence gene operons in Shigella flexneri strain 2457T are functional, despite the gene annotations. Our results demonstrate that at least three structural genes facilitate S. flexneri 2457T adherence for epithelial cell contact and biofilm formation. Furthermore, our results demonstrate that host factors, namely, glucose and bile salts at their physiological concentrations in the small intestine, offer key environmental stimuli required for adherence factor expression in S. flexneri This research may have a significant impact on Shigella vaccine development and further highlights the importance of utilizing in vivo-like conditions to study bacterial pathogenesis.IMPORTANCE Bacterial pathogens have evolved to regulate virulence gene expression at critical points in the colonization and infection processes to successfully cause disease. The Shigella species infect the epithelial cells lining the colon to result in millions of cases of diarrhea and a significant global health burden. As antibiotic resistance rates increase, understanding the mechanisms of infection is vital to ensure successful vaccine development. Despite significant gains in our understanding of Shigella infection, it remains unknown how the bacteria initiate contact with the colonic epithelium. Most pathogens harbor multiple adherence factors to facilitate this process, but Shigella was thought to have lost the ability to produce these factors. Interestingly, we have identified conditions that mimic some features of gastrointestinal transit and that enable Shigella to express adherence structural genes. This work highlights aspects of genetic regulation for Shigella adherence factors and may have a significant impact on future vaccine development.


Asunto(s)
Adhesinas Bacterianas/biosíntesis , Adhesión Bacteriana , Células Epiteliales/microbiología , Regulación Bacteriana de la Expresión Génica , Shigella flexneri/crecimiento & desarrollo , Shigella flexneri/metabolismo , Adhesinas Bacterianas/genética , Ácidos y Sales Biliares/metabolismo , Biopelículas/crecimiento & desarrollo , Células Cultivadas , Perfilación de la Expresión Génica , Glucosa/metabolismo , Interacciones Huésped-Patógeno , Humanos , Operón , Shigella flexneri/efectos de los fármacos
6.
PLoS One ; 14(4): e0215132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30998704

RESUMEN

BACKGROUND & AIMS: The early steps in the pathophysiology of celiac disease (CD) leading to loss of tolerance to gluten are poorly described. Our aim was to use RNA sequencing of duodenal biopsies in patients with active CD, CD in remission, and non-CD controls to gain insight into CD pathophysiology, identify additional genetic signatures linked to CD, and possibly uncover targets for future therapeutic agents. METHODS: We performed whole transcriptome shotgun sequencing of intestinal biopsies in subjects with active and remission CD and non-CD controls. We also performed functional pathway analysis of differentially expressed genes to identify statistically significant pathways that are up or down regulated in subjects with active CD compared to remission CD. RESULTS: We identified the upregulation of novel genes including IL12R, ITGAM and IGSF4 involved in the immune response machinery and cell adhesion process in the mucosa of subjects with active CD compared to those in remission. We identified a unique signature of genes, related to innate immunity, perturbed exclusively in CD irrespective of disease status. Finally, we highlight novel pathways of interest that may contribute to the early steps of CD pathogenesis and its comorbidities such as the spliceosome, pathways related to the innate immune response, and pathways related to autoimmunity. CONCLUSIONS: Our study confirmed previous findings based on GWAS and immunological studies pertinent to CD pathogenesis and describes novel genes and pathways that with further validation may be found to contribute to the early steps in the pathogenesis of CD, ongoing inflammation, and comorbidities associated with CD.


Asunto(s)
Biomarcadores/análisis , Enfermedad Celíaca/patología , Duodeno/metabolismo , Inflamación/genética , Mucosa Intestinal/metabolismo , Análisis de Secuencia de ARN/métodos , Estudios de Casos y Controles , Enfermedad Celíaca/genética , Enfermedad Celíaca/metabolismo , Humanos , Inflamación/complicaciones , Transducción de Señal , Transcriptoma
7.
J Pediatr Gastroenterol Nutr ; 68(4): 509-516, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30418409

RESUMEN

OBJECTIVE: Enteric bacterial pathogens cause diarrheal disease and mortality at significant rates throughout the world, particularly in children younger than 5 years. Our ability to combat bacterial pathogens has been hindered by antibiotic resistance, a lack of effective vaccines, and accurate models of infection. With the renewed interest in bacteriophage therapy, we sought to use a novel human intestinal model to investigate the efficacy of a newly isolated bacteriophage against Shigella flexneri. METHODS: An S. flexneri 2457T-specific bacteriophage was isolated and assessed through kill curve experiments and infection assays with colorectal adenocarcinoma HT-29 cells and a novel human intestinal organoid-derived epithelial monolayer model. In our treatment protocol, organoids were generated from intestinal crypt stem cells, expanded in culture, and seeded onto transwells to establish 2-dimensional monolayers that differentiate into intestinal cells. RESULTS: The isolated bacteriophage efficiently killed S. flexneri 2457T, other S. flexneri strains, and a strain of 2457T harboring an antibiotic resistance cassette. Analyses with laboratory and commensal Escherichia coli strains demonstrated that the bacteriophage was specific to S. flexneri, as observed under co-culture conditions. Importantly, the bacteriophage prevented both S. flexneri 2457T epithelial cell adherence and invasion in both infection models. CONCLUSIONS: Bacteriophages offer feasible alternatives to antibiotics for eliminating enteric pathogens, confirmed here by the bacteriophage-targeted killing of S. flexneri. Furthermore, application of the organoid model has provided important insight into Shigella pathogenesis and bacteriophage-dependent intervention strategies. The screening platform described herein provides proof-of-concept analysis for the development of novel bacteriophage therapies to target antibiotic-resistant pathogens.


Asunto(s)
Diarrea Infantil/terapia , Escherichia coli , Intestinos/microbiología , Terapia de Fagos , Shigella flexneri , Niño , Diarrea Infantil/microbiología , Femenino , Células HT29 , Humanos , Lactante , Recién Nacido , Masculino
8.
J Vis Exp ; (135)2018 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-29781989

RESUMEN

Biofilm formation is a dynamic, multistage process that occurs in bacteria under harsh environmental conditions or times of stress. For enteric pathogens, a significant stress response is induced during gastrointestinal transit and upon bile exposure, a normal component of human digestion. To overcome the bactericidal effects of bile, many enteric pathogens form a biofilm hypothesized to permit survival when transiting through the small intestine. Here we present methodologies to define biofilm formation through solid-phase adherence assays as well as extracellular polymeric substance (EPS) matrix detection and visualization. Furthermore, biofilm dispersion assessment is presented to mimic the analysis of events triggering release of bacteria during the infection process. Crystal violet staining is used to detect adherent bacteria in a high-throughput 96-well plate adherence assay. EPS production assessment is determined by two assays, namely microscopy staining of the EPS matrix and semi-quantitative analysis with a fluorescently-conjugated polysaccharide binding lectin. Finally, biofilm dispersion is measured through colony counts and plating. Positive data from multiple assays support the characterization of biofilms and can be utilized to identify bile salt-induced biofilm formation in other bacterial strains.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/patogenicidad , Ácidos y Sales Biliares/metabolismo , Biopelículas/crecimiento & desarrollo , Antibacterianos/farmacología , Humanos
9.
Inflamm Bowel Dis ; 24(5): 1005-1020, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29554272

RESUMEN

Background: Epidemiological studies indicate that the use of artificial sweeteners doubles the risk for Crohn's disease (CD). Herein, we experimentally quantified the impact of 6-week supplementation with a commercial sweetener (Splenda; ingredients sucralose maltodextrin, 1:99, w/w) on both the severity of CD-like ileitis and the intestinal microbiome alterations using SAMP1/YitFc (SAMP) mice. Methods: Metagenomic shotgun DNA sequencing was first used to characterize the microbiome of ileitis-prone SAMP mice. Then, 16S rRNA microbiome sequencing, quantitative polymerase chain reaction, fluorescent in situ hybridization (FISH), bacterial culture, stereomicroscopy, histology, and myeloperoxidase (MPO) activity analyses were then implemented to compare the microbiome and ileitis phenotype in SAMP with that of control ileitis-free AKR/J mice after Splenda supplementation. Results: Metagenomics indicated that SAMP mice have a gut microbial phenotype rich in Bacteroidetes, and experiments showed that Helicobacteraceae did not have an exacerbating effect on ileitis. Splenda did not increase the severity of (stereomicroscopic/histological) ileitis; however, biochemically, ileal MPO activity was increased in SAMP treated with Splenda compared with nonsupplemented mice (P < 0.022) and healthy AKR mice. Splenda promoted dysbiosis with expansion of Proteobacteria in all mice, and E. coli overgrowth with increased bacterial infiltration into the ileal lamina propria of SAMP mice. FISH showed increase malX gene-carrying bacterial clusters in the ilea of supplemented SAMP (but not AKR) mice. Conclusions: Splenda promoted gut Proteobacteria, dysbiosis, and biochemical MPO reactivity in a spontaneous model of (Bacteroidetes-rich) ileal CD. Our results indicate that although Splenda may promote parallel microbiome alterations in CD-prone and healthy hosts, this did not result in elevated MPO levels in healthy mice, only CD-prone mice. The consumption of sucralose/maltodextrin-containing foods might exacerbate MPO intestinal reactivity only in individuals with a pro-inflammatory predisposition, such as CD.


Asunto(s)
Enfermedad de Crohn/patología , Disbiosis/fisiopatología , Ileítis/patología , Mucosa Intestinal/patología , Sacarosa/análogos & derivados , Edulcorantes/efectos adversos , Animales , Bacteroidetes/efectos de los fármacos , Bacteroidetes/genética , Enfermedad de Crohn/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Ileítis/metabolismo , Hibridación Fluorescente in Situ , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos AKR , Microbiota , Peroxidasa/metabolismo , Proteobacteria/efectos de los fármacos , Proteobacteria/genética , ARN Ribosómico 16S/genética , Sacarosa/efectos adversos
10.
J Histochem Cytochem ; 66(4): 273-287, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290146

RESUMEN

Intestinal epithelium plays a critical role in host defense against orally acquired pathogens. Dysregulation of this protective barrier is a primary driver of inflammatory bowel diseases (Crohn's and ulcerative colitis) and also infant gastrointestinal infections. Previously, our lab reported that hyaluronan (HA) isolated from human milk induces the expression of the antimicrobial peptide ß-defensin in vivo and protects against Salmonella Typhimurium infection of epithelial cells in vitro. In addition, we demonstrated that commercially available 35 kDa size HA induces the expression of ß-defensin, upregulates the expression of tight junction protein zonula occludens-1 (ZO-1), and attenuates murine Citrobacter rodentium infection in vivo. In this current study, we report that HA35 remains largely intact and biologically active during transit through the digestive tract where it directly induces ß-defensin expression upon epithelial cell contact. We also demonstrate HA35 abrogation of murine Salmonella Typhimurium infection as well as downregulation of leaky tight junction protein claudin-2 expression. Taken together, we propose a dual role for HA in host innate immune defense at the epithelial cell surface, acting to induce antimicrobial peptide production and also block pathogen-induced leaky gut. HA35 is therefore a promising therapeutic in the defense against bacterially induced colitis in compromised adults and vulnerable newborns.


Asunto(s)
Antibacterianos/uso terapéutico , Ácido Hialurónico/uso terapéutico , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium/efectos de los fármacos , Animales , Antibacterianos/farmacocinética , Claudina-2/análisis , Colon/microbiología , Colon/patología , Tránsito Gastrointestinal , Humanos , Ácido Hialurónico/farmacocinética , Inmunidad Innata/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Masculino , Ratones Endogámicos C57BL , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/patología , Salmonella typhimurium/inmunología , beta-Defensinas/análisis
11.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28348056

RESUMEN

The Shigella species cause millions of cases of watery or bloody diarrhea each year, mostly in children in developing countries. While many aspects of Shigella colonic cell invasion are known, crucial gaps in knowledge regarding how the bacteria survive, transit, and regulate gene expression prior to infection remain. In this study, we define mechanisms of resistance to bile salts and build on previous research highlighting induced virulence in Shigella flexneri strain 2457T following exposure to bile salts. Typical growth patterns were observed within the physiological range of bile salts; however, growth was inhibited at higher concentrations. Interestingly, extended periods of exposure to bile salts led to biofilm formation, a conserved phenotype that we observed among members of the Enterobacteriaceae Characterization of S. flexneri 2457T biofilms determined that both bile salts and glucose were required for formation, dispersion was dependent upon bile salts depletion, and recovered bacteria displayed induced adherence to HT-29 cells. RNA-sequencing analysis verified an important bile salt transcriptional profile in S. flexneri 2457T, including induced drug resistance and virulence gene expression. Finally, functional mutagenesis identified the importance of the AcrAB efflux pump and lipopolysaccharide O-antigen synthesis for bile salt resistance. Our data demonstrate that S. flexneri 2457T employs multiple mechanisms to survive exposure to bile salts, which may have important implications for multidrug resistance. Furthermore, our work confirms that bile salts are important physiological signals to activate S. flexneri 2457T virulence. This work provides insights into how exposure to bile likely regulates Shigella survival and virulence during host transit and subsequent colonic infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/farmacología , Biopelículas/efectos de los fármacos , Antígenos O/metabolismo , Shigella flexneri/efectos de los fármacos , Shigella flexneri/patogenicidad , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Células HT29 , Células HeLa , Humanos , Microscopía Electrónica , Mutación , Antígenos O/genética , Análisis de Secuencia de ARN , Shigella flexneri/genética , Virulencia/genética
12.
Clin Microbiol Rev ; 29(4): 819-36, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27464994

RESUMEN

Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens.


Asunto(s)
Bilis/metabolismo , Enterobacteriaceae/fisiología , Animales , Modelos Animales de Enfermedad , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Viabilidad Microbiana , Virulencia , Factores de Virulencia/biosíntesis
13.
Gut Microbes ; 6(1): 78-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25738413

RESUMEN

Inflammatory bowel disease (IBD) is a complex, multi-factorial disease thought to arise from an inappropriate immune response to commensal bacteria in a genetically susceptible person that results in chronic, cyclical, intestinal inflammation. Dietary and environmental factors are implicated in the initiation and perpetuation of IBD; however, a singular causative agent has not been identified. As of now, the role of environmental priming or triggers in IBD onset and pathogenesis are not well understood, but these factors appear to synergize with other disease susceptibility factors. In previous work, we determined that the polysaccharide dietary additive, maltodextrin (MDX), impairs cellular anti-bacterial responses and suppresses intestinal anti-microbial defense mechanisms. In this addendum, we review potential mechanisms for dietary deregulation of intestinal homeostasis, postulate how dietary and genetic risk factors may combine to result in disease pathogenesis, and discuss these ideas in the context of recent findings related to dietary interventions for IBD.


Asunto(s)
Inmunidad Mucosa/efectos de los fármacos , Inmunosupresores/administración & dosificación , Inmunosupresores/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Polisacáridos/administración & dosificación , Animales , Aditivos Alimentarios/administración & dosificación , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente
14.
Gastroenterology ; 148(7): 1405-1416.e3, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25701737

RESUMEN

BACKGROUND & AIMS: Defects in colonic epithelial barrier defenses are associated with ulcerative colitis (UC). The proteins that regulate bacterial clearance in the colonic epithelium have not been completely identified. The Drosophila chromosome-associated protein D3 (dCAP-D3) regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS: Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing small hairpin RNAs against CAP-D3. We used immunoblot assays to measure levels of CAP-D3 in colonic epithelial cells from patients with UC and healthy individuals (controls). RNA sequencing identified genes activated by CAP-D3. We analyzed the roles of CAP-D3 target genes in bacterial clearance using gentamycin protection and immunofluorescence assays and studies with pharmacologic inhibitors. RESULTS: CAP-D3 expression was reduced in colonic epithelial cells from patients with active UC. Reduced CAP-D3 expression decreased autophagy and impaired intracellular bacterial clearance by HT-29 and Caco-2 colonic epithelial cells. Lower levels of CAP-D3 increased transcription of genes encoding SLC7A5 and SLC3A2, the products of which heterodimerize to form an amino acid transporter in HT-29 cells after bacterial infection; levels of SLC7A5-SLC3A2 were increased in tissues from patients with UC compared with controls. Reduced CAP-D3 in HT-29 cells resulted in earlier recruitment of SLC7A5 to Salmonella-containing vacuoles, increased activity of mTORC1, and increased survival of bacteria. Inhibition of SLC7A5-SLC3A2 or mTORC1 activity rescued the bacterial clearance defects of CAP-D3-deficient cells. CONCLUSIONS: CAP-D3 down-regulates transcription of genes that encode amino acid transporters (SLC7A5 and SLC3A2) to promote bacterial autophagy by colon epithelial cells. Levels of CAP-D3 protein are reduced in patients with active UC; strategies to increase its levels might restore mucosal homeostasis to patients with active UC.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Escherichia coli/fisiología , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Salmonella/fisiología , Adenosina Trifosfatasas , Autofagia , Células CACO-2 , Proteínas de Ciclo Celular/genética , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/microbiología , Proteínas de Drosophila , Células Epiteliales/inmunología , Escherichia coli/inmunología , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Regulación de la Expresión Génica , Células HT29 , Humanos , Inmunidad Innata , Mucosa Intestinal/inmunología , Transportador de Aminoácidos Neutros Grandes 1/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Viabilidad Microbiana , Complejos Multiproteicos/metabolismo , Interferencia de ARN , Salmonella/inmunología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Transcripción Genética , Transfección
15.
Inflamm Bowel Dis ; 21(4): 912-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25581832

RESUMEN

Inflammatory bowel disease (IBD) encompasses a group of disorders affecting the gastrointestinal tract characterized by acute and chronic inflammation. These are complex and multifactorial disorders that arise in part from a genetic predisposition. However, the increasing incidence of IBD in developing countries suggests that environmental factors, such as diet, are also critical components of disease susceptibility. Evidence suggests that consumption of a Western diet, enriched with saturated fat, refined carbohydrates, and food additives, is associated with increased IBD risk. Dietary components, such as omega-6 fatty acids, long-chain fatty acids, protein, and digestible carbohydrates, may contribute to IBD pathogenesis through altering intestinal microbiota, increasing intestinal permeability, and promoting inflammation; whereas omega-3 fatty acids, medium chain triglycerides, and nondigestible carbohydrates improve these parameters and intestinal health. However, the limited amount of prospective studies, small sample sizes, and the heterogeneity of disease subtype result in inconsistencies between studies and difficulty in conclusively determining the specific effects of diet on intestinal homeostasis. There are no standard clinical dietary recommendations for patients with IBD. However, exclusionary diet interventions have shown some efficacy in relieving symptoms or inducing remission, suggesting more research is needed to fully understand how diet influences disease behavior or combines with other IBD risk factors to promote disease. This review focuses on the associations of various dietary components and IBD risk in clinical studies and genetically susceptible IBD models.


Asunto(s)
Dieta/efectos adversos , Predisposición Genética a la Enfermedad , Enfermedades Inflamatorias del Intestino/etiología , Carbohidratos de la Dieta/efectos adversos , Grasas de la Dieta/efectos adversos , Proteínas en la Dieta/efectos adversos , Humanos , Enfermedades Inflamatorias del Intestino/genética , Factores de Riesgo
16.
PLoS One ; 9(7): e101789, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25000398

RESUMEN

In the latter half of the 20th century, societal and technological changes led to a shift in the composition of the American diet to include a greater proportion of processed, pre-packaged foods high in fat and carbohydrates, and low in dietary fiber (a "Western diet"). Over the same time period, there have been parallel increases in Salmonella gastroenteritis cases and a broad range of chronic inflammatory diseases associated with intestinal dysbiosis. Several polysaccharide food additives are linked to bacterially-driven intestinal inflammation and may contribute to the pathogenic effects of a Western diet. Therefore, we examined the effect of a ubiquitous polysaccharide food additive, maltodextrin (MDX), on clearance of the enteric pathogen Salmonella using both in vitro and in vivo infection models. When examined in vitro, murine bone marrow-derived macrophages exposed to MDX had altered vesicular trafficking, suppressed NAPDH oxidase expression, and reduced recruitment of NADPH oxidase to Salmonella-containing vesicles, which resulted in persistence of Salmonella in enlarged Rab7+ late endosomal vesicles. In vivo, mice consuming MDX-supplemented water had a breakdown of the anti-microbial mucous layer separating gut bacteria from the intestinal epithelium surface. Additionally, oral infection of these mice with Salmonella resulted in increased cecal bacterial loads and enrichment of lamina propria cells harboring large Rab7+ vesicles. These findings indicate that consumption of processed foods containing the polysaccharide MDX contributes to suppression of intestinal anti-microbial defense mechanisms and may be an environmental priming factor for the development of chronic inflammatory disease.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Viabilidad Microbiana/efectos de los fármacos , Polisacáridos/farmacología , Salmonella typhi/efectos de los fármacos , Salmonella typhi/fisiología , Animales , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Mucosa Intestinal/metabolismo , Ratones , NADPH Oxidasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(42): 16999-7004, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082103

RESUMEN

Nucleotide-binding oligomerization domain-containing 2 (NOD2) is an intracellular receptor that plays an essential role in innate immunity as a sensor of a component of the bacterial cell wall, muramyl dipeptide (MDP). Crohn's disease (CD)-associated NOD2 variants lead to defective innate immune responses, including decreased NF-κB activation and cytokine production. We report herein that SAMP1/YitFc (SAMP) mice, which develop spontaneous CD-like ileitis in the absence of NOD2 genetic mutations, fail to respond to MDP administration by displaying decreased innate cytokine production and dysregulated NOD2 signaling compared with parental AKR control mice. We show that, unlike in other mouse strains, in vivo administration of MDP does not prevent dextran sodium sulfate-induced colitis in SAMP mice and that the abnormal NOD2 response is specific to the hematopoietic cellular component. Moreover, we demonstrate that MDP fails to enhance intracellular bacterial killing in SAMP mice. These findings shed important light on the initiating molecular events underlying CD-like ileitis.


Asunto(s)
Predisposición Genética a la Enfermedad , Células Madre Hematopoyéticas/inmunología , Ileítis/inmunología , Inmunidad Innata , Proteína Adaptadora de Señalización NOD2/inmunología , Animales , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Citocinas/genética , Citocinas/inmunología , Células Madre Hematopoyéticas/patología , Ileítis/inducido químicamente , Ileítis/genética , Ileítis/patología , Ratones Endogámicos AKR , Ratones Transgénicos , Proteína Adaptadora de Señalización NOD2/genética
18.
PLoS One ; 7(12): e52132, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251695

RESUMEN

Crohn's disease (CD) is associated with intestinal dysbiosis evidenced by an altered microbiome forming thick biofilms on the epithelium. Additionally, adherent-invasive E. coli (AIEC) strains are frequently isolated from ileal lesions of CD patients indicating a potential role for these strains in disease pathogenesis. The composition and characteristics of the host microbiome are influenced by environmental factors, particularly diet. Polysaccharides added to food as emulsifiers, stabilizers or bulking agents have been linked to bacteria-associated intestinal disorders. The escalating consumption of polysaccharides in Western diets parallels an increased incidence of CD during the latter 20(th) century. In this study, the effect of a polysaccharide panel on adhesiveness of the CD-associated AIEC strain LF82 was analyzed to determine if these food additives promote disease-associated bacterial phenotypes. Maltodextrin (MDX), a polysaccharide derived from starch hydrolysis, markedly enhanced LF82 specific biofilm formation. Biofilm formation of multiple other E. coli strains was also promoted by MDX. MDX-induced E. coli biofilm formation was independent of polysaccharide chain length indicating a requirement for MDX metabolism. MDX exposure induced type I pili expression, which was required for MDX-enhanced biofilm formation. MDX also increased bacterial adhesion to human intestinal epithelial cell monolayers in a mechanism dependent on type 1 pili and independent of the cellular receptor CEACAM6, suggesting a novel mechanism of epithelial cell adhesion. Analysis of mucosa-associated bacteria from individuals with and without CD showed increased prevalence of malX, a gene essential for MDX metabolism, uniquely in the ileum of CD patients. These findings demonstrate that the ubiquitous dietary component MDX enhances E. coli adhesion and suggests a mechanism by which Western diets rich in specific polysaccharides may promote dysbiosis of gut microbes and contribute to disease susceptibility.


Asunto(s)
Adhesión Bacteriana/fisiología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/microbiología , Infecciones por Escherichia coli/metabolismo , Escherichia coli/fisiología , Polisacáridos/administración & dosificación , Animales , Antígenos CD/metabolismo , Biopelículas , Células CACO-2 , Adhesión Celular/fisiología , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Dieta/efectos adversos , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Escherichia coli/citología , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Fimbrias Bacterianas/metabolismo , Aditivos Alimentarios/administración & dosificación , Proteínas Ligadas a GPI/metabolismo , Células HT29 , Humanos , Íleon/metabolismo , Íleon/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones
19.
J Biol Chem ; 287(30): 25565-76, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22665475

RESUMEN

Autophagy is triggered by the intracellular bacterial sensor NOD2 (nucleotide-binding, oligomerization domain 2) as an anti-bacterial response. Defects in autophagy have been implicated in Crohn's disease susceptibility. The molecular mechanisms of activation and regulation of this process by NOD2 are not well understood, with recent studies reporting conflicting requirements for RIP2 (receptor-interacting protein kinase 2) in autophagy induction. We examined the requirement of NOD2 signaling mediated by RIP2 for anti-bacterial autophagy induction and clearance of Salmonella typhimurium in the intestinal epithelial cell line HCT116. Our data demonstrate that NOD2 stimulates autophagy in a process dependent on RIP2 tyrosine kinase activity. Autophagy induction requires the activity of the mitogen-activated protein kinases MEKK4 and p38 but is independent of NFκB signaling. Activation of autophagy was inhibited by a PP2A phosphatase complex, which interacts with both NOD2 and RIP2. PP2A phosphatase activity inhibited NOD2-dependent autophagy but not activation of NFκB or p38. Upon stimulation of NOD2, the phosphatase activity of the PP2A complex is inhibited through tyrosine phosphorylation of the catalytic subunit in a process dependent on RIP2 activity. These findings demonstrate that RIP2 tyrosine kinase activity is not only required for NOD2-dependent autophagy but plays a dual role in this process. RIP2 both sends a positive autophagy signal through activation of p38 MAPK and relieves repression of autophagy mediated by the phosphatase PP2A.


Asunto(s)
Autofagia , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Activación Enzimática/genética , Células Epiteliales/microbiología , Células HEK293 , Humanos , Mucosa Intestinal/microbiología , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Infecciones por Salmonella/genética , Infecciones por Salmonella/metabolismo , Salmonella typhimurium , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Gastroenterology ; 142(7): 1483-92.e6, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22387394

RESUMEN

BACKGROUND & AIMS: Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn's disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD therapies. METHODS: Carbamoyl phosphate synthetase/aspartate transcarbamylase/dihydroorotase (CAD) is an enzyme required for de novo pyrimidine nucleotide synthesis; it was identified as a NOD2-interacting protein by immunoprecipitation-coupled mass spectrometry. CAD expression was assessed in colon tissues from individuals with and without inflammatory bowel disease by immunohistochemistry. The interaction between CAD and NOD2 was assessed in human HCT116 intestinal epithelial cells by immunoprecipitation, immunoblot, reporter gene, and gentamicin protection assays. We also analyzed human cell lines that express variants of NOD2 and the effects of RNA interference, overexpression and CAD inhibitors. RESULTS: CAD was identified as a NOD2-interacting protein expressed at increased levels in the intestinal epithelium of patients with CD compared with controls. Overexpression of CAD inhibited NOD2-dependent activation of nuclear factor κB and p38 mitogen-activated protein kinase, as well as intracellular killing of Salmonella. Reduction of CAD expression or administration of CAD inhibitors increased NOD2-dependent signaling and antibacterial functions of NOD2 variants that are and are not associated with CD. CONCLUSIONS: The nucleotide synthesis enzyme CAD is a negative regulator of NOD2. The antibacterial function of NOD2 variants that have been associated with CD increased in response to pharmacologic inhibition of CAD. CAD is a potential therapeutic target for CD.


Asunto(s)
Aspartato Carbamoiltransferasa/fisiología , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/fisiología , Enfermedad de Crohn/inmunología , Desoxirribonucleasas/fisiología , Dihidroorotasa/fisiología , Mucosa Intestinal/microbiología , Proteína Adaptadora de Señalización NOD2/inmunología , Aspartato Carbamoiltransferasa/antagonistas & inhibidores , Aspartato Carbamoiltransferasa/uso terapéutico , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/antagonistas & inhibidores , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/uso terapéutico , Línea Celular , Células Cultivadas , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/microbiología , Dihidroorotasa/antagonistas & inhibidores , Dihidroorotasa/uso terapéutico , Inhibidores Enzimáticos/farmacología , Humanos , Inmunohistoquímica , Inmunoprecipitación , Mucosa Intestinal/inmunología , Espectrometría de Masas , FN-kappa B/fisiología , Proteína Adaptadora de Señalización NOD2/fisiología , Salmonella/crecimiento & desarrollo , Salmonella/inmunología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...