Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 533, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177383

RESUMEN

The prevalence of myopia (nearsightedness) is increasing to alarming levels, but its etiology remains poorly understood. Because both laboratory and clinical findings suggest an etiologic role for circadian rhythms in myopia development, we assayed gene expression by RNA-Seq in retina and choroid at the onset of unilateral experimental myopia in chick, isolating tissues every 4 h during a single 24-h period from myopic and contralateral control eyes. Occluded versus open eye gene expression differences varied considerably over the 24-h sampling period, with some occurring at multiple times of day but with others showing differences at only a single investigated timepoint. Some of the genes identified in retina or choroid of chick myopia were previously identified as candidate genes for common human myopia. Like differentially expressed genes, pathways identified by Gene Set Enrichment Analysis also varied dramatically by sampling time. Considered with other laboratory data, human genetic and epidemiology data, these findings further implicate circadian events in myopia pathogenesis. The present results emphasize a need to include time of day in mechanistic studies of myopia and to assess circadian biology directly in trying to understand better the origin of myopia and to develop more effective therapies.


Asunto(s)
Miopía , Retina , Humanos , Animales , Retina/metabolismo , Miopía/genética , Miopía/metabolismo , Coroides/metabolismo , Ritmo Circadiano/genética , Expresión Génica , Biología , Pollos/genética
2.
Invest Ophthalmol Vis Sci ; 64(6): 4, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126359

RESUMEN

The choroid is the richly vascular layer of the eye located between the sclera and Bruch's membrane. Early studies in animals, as well as more recent studies in humans, have demonstrated that the choroid is a dynamic, multifunctional structure, with its thickness directly and indirectly subject to modulation by a variety of physiologic and visual stimuli. In this review, the anatomy and function of the choroid are summarized and links between the choroid, eye growth regulation, and myopia, as demonstrated in animal models, discussed. Methods for quantifying choroidal thickness in the human eye and associated challenges are described, the literature examining choroidal changes in response to various visual stimuli and refractive error-related differences are summarized, and the potential implications of the latter for myopia are considered. This review also allowed for the reexamination of the hypothesis that short-term changes in choroidal thickness induced by pharmacologic, optical, or environmental stimuli are predictive of future long-term changes in axial elongation, and the speculation that short-term choroidal thickening can be used as a biomarker of treatment efficacy for myopia control therapies, with the general conclusion that current evidence is not sufficient.


Asunto(s)
Longitud Axial del Ojo , Miopía , Animales , Humanos , Coroides/fisiología , Lámina Basal de la Coroides , Modelos Animales , Tomografía de Coherencia Óptica/métodos
3.
Optom Vis Sci ; 100(1): 33-42, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473083

RESUMEN

SIGNIFICANCE: Exposure to blue light before bedtime is purported to be deleterious to various aspects of human health. In chicks, blue evening light stimulated ocular growth, suggesting a role in myopia development. To further investigate this hypothesis, we asked if brief blue light altered the compensatory responses to hyperopic defocus. PURPOSE: Previous work showed that several hours' evening exposure to blue light stimulated ocular growth in chicks, but morning exposure was only effective at a lower illuminance. By contrast, rearing in blue light has inhibited ocular growth in untreated eyes and eyes exposed to form deprivation or defocus. We studied the effects of brief exposures to blue light on the compensation to hyperopic defocus. METHODS: Chicks wore monocular negative lenses (-10 D) starting at age 10 days. They were subsequently exposed to blue light (460 nm) for 4 hours in the morning or evening for 8 to 9 days ("dim," 200 lux[morning, n = 9; evening, n = 11]; "bright," 600 lux[morning, n = 8; evening, n = 20]); controls wore lenses in white light (n = 14). Ultrasonography was done on days 1, 5, 8, and 9 for "evening" groups and days 1, 6, and 8 for "morning." All data are reported as interocular differences (experimental minus fellow eyes). Refractions were measured on the last day. RESULTS: For evening exposure, dim blue light enhanced the axial compensation at all times (change in axial length: day 6: 465 vs. 329 µm/9 days, analysis of variance P < .001, P = .03; day 9: 603 vs. 416 µm/9 days, analysis of variance P < .001; P < .05). Bright blue light had a transient inhibitory effect (day 5: 160 vs. 329 µm; P < .005). Refractive errors were consistent with axial growth, with dim causing more myopia than bright (-9.4 vs. -4.7 D; P < .05). Morning blue light had no significant effect. CONCLUSIONS: We speculate that these findings reflect a complex interaction between illuminance, defocus, and time of day.


Asunto(s)
Hiperopía , Miopía , Animales , Pollos , Ojo , Hiperopía/terapia , Miopía/etiología , Miopía/terapia , Refracción Ocular
4.
Exp Eye Res ; 217: 108963, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35093392

RESUMEN

Recent evidence indicates that moderate levels of blue light are sufficient to suppress the nighttime rise in serum melatonin in humans, suggesting that luminous screens may be deleterious to sleep cycles and to other functions. Little is known however, about the effects of exposures to blue light on ocular physiology. We tested the effects of transient blue light exposures of various illuminances on ocular growth rates and ocular rhythms in chicks. 10-day old chicks were exposed to narrow band blue light (460 nm) of specific illuminance for 4 h in the evening (ZT8-ZT12) or the morning (ZT0-ZT4) for 9 days; for the remainder of the day they were in white light (588 lux). For the evening, four illuminances were tested: 0.15 lux (n = 15), 200 lux (radiometrically matched to white controls; n = 16), 600 lux (photometrically matched to white controls; n = 15) or 1000 lux (n = 8). The 600 lux condition was also tested using a 2-h duration (n = 8). The 200 and 600 lux conditions were extended to 14 and 21 days (n = 8 each). For morning exposures, 200 lux (n = 9), 600 lux (n = 9) and 1000 lux (n = 8) were tested. Controls remained in white light (n = 23). Ocular dimensions were measured by A-scan ultrasonography on days 1 and 9 to assess growth rates. On day 8 or 9, measurements were made at 6-h intervals over 24 h starting at noon to assess rhythm parameters. Evening exposure to blue light stimulated ocular growth rates relative to controls for all except the bright condition (0.15 lux, 200 lux, 600 lux vs bright and white respectively: 845 µm, 838 µm, 898 µm vs 733 µm and 766 µm; p < 0.05 for all comparisons). 2 h exposures to 600 lux were similarly effective (915 µm vs 766 µm; p < 0.05). Morning exposures only resulted in growth stimulation for the 200 lux condition (200 lux vs white: 884 µm vs 766 µm; p < 0.05). Furthermore, for this group only, growth of the anterior chamber had a significant contribution to the overall effect (vs white: p < 0.05), and choroids showed significant thickening. For evening exposures to 200 and 600 lux, the growth stimulatory effect lasted for 14 days (p = 0.01); by 21 days only the 600 lux group still differed (p < 0.0001). Evening exposures caused circadian disruptions in the choroidal thickness rhythms, and morning exposures disrupted both axial and choroidal rhythms. Exposure to 4 h of blue light at lower illuminances (less than 1000 lux) at transition times of lights-on and lights-off stimulates ocular growth rates and affects ocular rhythms in chicks, suggesting that such exposures may be deleterious to emmetropization in children.


Asunto(s)
Melatonina , Miopía , Animales , Pollos , Niño , Coroides , Ritmo Circadiano/fisiología , Humanos , Luz , Miopía/etiología , Refracción Ocular
5.
Invest Ophthalmol Vis Sci ; 61(5): 13, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32396635

RESUMEN

Purpose: Stimulated by evidence implicating diurnal/circadian rhythms and light in refractive development, we studied the expression over 24 hours of selected clock and circadian rhythm-related genes in retina/retinal pigment epithelium (RPE) and choroid of experimental ametropias in chicks. Methods: Newly hatched chicks, entrained to a 12-hour light/dark cycle for 12 to 14 days, either experienced nonrestricted vision OU (i.e., in both eyes) or received an image-blurring diffuser or a minus 10-diopter (D) or a plus 10-D defocusing lens over one eye. Starting 1 day later and at 4-hour intervals for 24 hours, the retina/RPE and choroid were separately dissected. Without pooling, total RNA was extracted, converted to cDNA, and assayed by quantitative PCR for the expression of the following genes: Opn4m, Clock, Npas2, Per3, Cry1, Arntl, and Mtnr1a. Results: The expression of each gene in retina/RPE and in choroid of eyes with nonrestricted vision OU varied over 24 hours, with equal levels OU for most genes and times. Altered visual input influenced gene expression in complex patterns that varied by gene, visual input, time, and eye, affecting experimental eyes with altered vision and also contralateral eyes with nonrestricted vision. Discussion: Altering visual input in ways known to induce ametropias alters the retinal/RPE and choroidal expression of circadian rhythm-related genes, further linking circadian biology with eye growth regulation. While further investigations are needed, studying circadian processes may help understand refractive mechanisms and the increasing myopia prevalence in contemporary societies where lighting patterns can desynchronize endogenous rhythms from the natural environmental light/dark cycle.


Asunto(s)
Coroides/metabolismo , Ritmo Circadiano/genética , Perfilación de la Expresión Génica , Errores de Refracción/etiología , Retina/metabolismo , Agudeza Visual , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Pollos , Criptocromos/genética , Criptocromos/metabolismo , ADN Complementario/metabolismo , Oscuridad , Modelos Animales de Enfermedad , Luz , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo
6.
Exp Eye Res ; 195: 108039, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32339518

RESUMEN

Evidence suggests that the relevant variable in the anti-myopigenic effect of increased time spent outdoors is the increase in light intensity. Because light is the strongest Zeitgeber, it is plausible that the effects of bright light exposure depend on time of day, and may impact circadian rhythms. In these studies, we asked whether the effects on eye growth rates and ocular rhythms of brief daily exposures to bright light differed depending on time of day in eyes developing myopia in response to form deprivation (FD) or negative lens-induced hyperopic defocus (LENS). We also studied the effects of concurrent exposures to brief hyperopic defocus and bright light. Exp. 1: Starting at 12d, chicks wearing monocular diffusers or -10 D lenses were exposed to 3 daily hours (h) of bright light (30K lux) in the morning (FD: n = 12; LENS: n = 7) or evening (FD: n = 21; LENS: n = 7) for a total of 6 exposures. Controls wore diffusers or lenses but weren't exposed to bright light ("not bright" FD: n = 14; LENS: n = 9). Exp. 2: Untreated chicks were exposed to 3 h bright light in the morning (n = 12) or evening (n = 14) for a total of 6 exposures. Controls were not exposed to bright light (n = 11). Exp. 3: Chicks were exposed to 2 h simultaneous monocular hyperopic defocus and bright light in the morning (n = 11), mid-day (n = 7) or evening (n = 8) for 5 exposures. "Not bright" lens-wearing controls were data from published work (Nickla et al., 2017). High frequency A-scan ultrasonography was done at the start and end to measure growth rates. The FD group in Exp. 1 and the morning and evening groups in Exp. 3 were measured at 6-h intervals over the final 24 h to determine parameters for the rhythms in axial length and choroidal thickness. 1. Brief bright light in the evening inhibited eye growth in eyes wearing diffusers or lenses relative to "not bright" controls(interocular differences: FD: 316 vs 468 µm, p = 0.026; LENS: 233 vs 438 µm, p = 0.03); morning bright light had no effect. There was no differential effect of time of day of exposure on the rhythm in axial length; for choroid thickness, "time" accounted for the variance between groups (2-way ANOVA interaction p = 0.027). 2. In binocularly untreated chicks, bright light in the morning had a small but significant growth stimulatory effect relative to evening exposures (803  vs 679 µm/7d; post-hoc p = 0.048). 3. Eyes exposed to simultaneous hyperopic defocus and bright light were significantly more inhibited relative to "not bright" controls for morning exposures (interocular differences: -207 vs 69 µm; p < 0.01). In conclusion, the effects of brief periods of bright light on the growth controller depended on the time of day of exposure and on the contemporaneous state ofocular growth .


Asunto(s)
Ritmo Circadiano/fisiología , Ojo/crecimiento & desarrollo , Luz , Miopía/fisiopatología , Refracción Ocular/fisiología , Animales , Animales Recién Nacidos , Pollos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ojo/efectos de la radiación
8.
Exp Eye Res ; 181: 5-14, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30629959

RESUMEN

Injections of the D2 dopamine receptor agonist quinpirole or the acetylcholine muscarinic receptor antagonists pirenzepine and atropine prevent the development of negative-lens-induced myopia in chicks by inhibiting ocular growth. Because ocular growth is diurnally rhythmic, we hypothesized that the efficacy for inhibition may depend on time of day. Chicks wore monocular -10D lenses for 5 days, starting at 12d of age. The light cycle was 12L/12D. The lens-wearing eye received daily intravitreal injections for 4 days, of 20 µl quinpirole (10 nmol), at the following times: 7:30 EST (lights-on; morning; n = 12), 12:00 (mid-day; n = 13), or 19:30 (evening; n = 17). The same protocol was used for pirenzepine (0.2 µmol) and atropine (18 nmol), at the following times: 8:30 EDT (lights-on; n = 10; n = 18), 14:00 (n = 10; n = 12), or 20:30 (n = 18; n = 16). Saline injections were done in separate groups of birds for all groups as controls, and the data combined (n = 28). Ocular dimensions were measured using A-scan ultrasonography on treatment day 1 at 12:00, and again on day 5 at 12:00; growth rate is defined as the change in axial length over 96 h. For quinpirole and pirenzepine, subsets (n's in Methods) of mid-day and evening groups were measured at 6 h intervals on day 5 (from 12:00 to 12:00) to obtain rhythm parameters for axial length and choroidal thickness; for atropine, only the mid-day group was measured. Refractions were measured on day 5 with a Hartinger's refractometer. For quinpirole and pirenzepine, mid-day injections were more effective at inhibiting ocular growth than evening (Exp-fellow: quinpirole: -68 vs 118 µm/96h; post-hoc Bonferroni p = 0.016; pirenzepine: 79 vs 215 µm/96h; p = 0.046). There were no between-group statistically significant differences for atropine. For quinpirole, the mid-day amplitude of the axial rhythm was smaller than for evening (95 vs 142 µm; p < 0.05), but there were no time-dependent effects on the rhythms for pirenzepine. For atropine, the amplitude of the axial-length rhythm was significantly larger than that for pirenzepine at mid-day. We conclude that there is a phase-dependent efficacy for quinpirole and pirenzepine, with mid-day injections being most effective. There were no consistent time-dependent alterations in rhythm parameters for any of the drugs.


Asunto(s)
Atropina/farmacología , Agonistas de Dopamina/farmacología , Ojo/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Miopía/prevención & control , Pirenzepina/farmacología , Quinpirol/farmacología , Animales , Animales Recién Nacidos , Pollos , Ritmo Circadiano/fisiología , Esquema de Medicación , Ojo/crecimiento & desarrollo , Inyecciones Intravítreas , Privación Sensorial
9.
Artículo en Inglés | MEDLINE | ID: mdl-30604271

RESUMEN

In chicks, axial length and choroidal thickness undergo circadian oscillations. The choroid is innervated by both branches of the autonomic nervous system, but their contribution(s) to these rhythms is unknown. We used two combination lesions to test this. For parasympathectomy, nerve VII was sectioned presynaptic to the pterygopalatine ganglia, and the ciliary post-ganglionics were cut (double lesion; n = 8). Triple lesions excised the sympathetic superior cervical ganglion as well (n = 8). Sham surgery was done in controls (n = 7). 8-14 days later, axial dimensions were measured with ultrasonography at 4-h intervals over 24 h. Rhythm parameters were assessed using a "best fit" function, and growth rates measured. Both types of lesions resulted in ultradian (> 1 cycle/24 h) rhythms in choroidal thickness and axial length, and increased vitreous chamber growth (Exp-fellow: double: 69 µm; triple: 104 µm; p < 0.05). For double lesions, the frequency was 1.5 cycles/day for both rhythms; for triples the choroidal rhythm was 1.5 cycles/day, and the axial was 3 cycles/day. For double lesions, the amplitudes of both rhythms were larger than those of sham surgery controls (axial: 107 vs 54 µm; choroid: 124 vs 29 µm, p < 0.05). These findings provide evidence for the involvement of abnormal ocular rhythms in the growth stimulation underlying myopia development.


Asunto(s)
Desnervación Autonómica , Longitud Axial del Ojo/inervación , Pollos/fisiología , Coroides/inervación , Ganglios Parasimpáticos/cirugía , Miopía/fisiopatología , Ganglio Cervical Superior/cirugía , Ritmo Ultradiano , Animales , Animales Recién Nacidos , Factores de Tiempo , Visión Ocular
10.
Ophthalmic Physiol Opt ; 38(3): 217-245, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29691928

RESUMEN

PURPOSE: Despite extensive research, mechanisms regulating postnatal eye growth and those responsible for ametropias are poorly understood. With the marked recent increases in myopia prevalence, robust and biologically-based clinical therapies to normalize refractive development in childhood are needed. Here, we review classic and contemporary literature about how circadian biology might provide clues to develop a framework to improve the understanding of myopia etiology, and possibly lead to rational approaches to ameliorate refractive errors developing in children. RECENT FINDINGS: Increasing evidence implicates diurnal and circadian rhythms in eye growth and refractive error development. In both humans and animals, ocular length and other anatomical and physiological features of the eye undergo diurnal oscillations. Systemically, such rhythms are primarily generated by the 'master clock' in the surpachiasmatic nucleus, which receives input from the intrinsically photosensitive retinal ganglion cells (ipRGCs) through the activation of the photopigment melanopsin. The retina also has an endogenous circadian clock. In laboratory animals developing experimental myopia, oscillations of ocular parameters are perturbed. Retinal signaling is now believed to influence refractive development; dopamine, an important neurotransmitter found in the retina, not only entrains intrinsic retinal rhythms to the light:dark cycle, but it also modulates refractive development. Circadian clocks comprise a transcription/translation feedback control mechanism utilizing so-called clock genes that have now been associated with experimental ametropias. Contemporary clinical research is also reviving ideas first proposed in the nineteenth century that light exposures might impact refraction in children. As a result, properties of ambient lighting are being investigated in refractive development. In other areas of medical science, circadian dysregulation is now thought to impact many non-ocular disorders, likely because the patterns of modern artificial lighting exert adverse physiological effects on circadian pacemakers. How, or if, such modern light exposures and circadian dysregulation contribute to refractive development is not known. SUMMARY: The premise of this review is that circadian biology could be a productive area worthy of increased investigation, which might lead to the improved understanding of refractive development and improved therapeutic interventions.


Asunto(s)
Ritmo Circadiano/fisiología , Ojo/crecimiento & desarrollo , Miopía , Refracción Ocular/fisiología , Progresión de la Enfermedad , Humanos , Miopía/diagnóstico , Miopía/etiología , Miopía/fisiopatología
11.
Exp Eye Res ; 161: 132-142, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596085

RESUMEN

It is generally accepted that myopic defocus is a more potent signal to the emmetropization system than hyperopic defocus: one hour per day of myopic defocus cancels out 11 h of hyperopic defocus. However, we have recently shown that the potency of brief episodes of myopic defocus at inhibiting eye growth depends on the time of day of exposure. We here ask if this will also be true of the responses to brief periods of hyperopic defocus: may integration of the signal depend on time of day? If so, are the rhythms in axial length and choroidal thickness altered? Hyperopic defocus: Birds had one eye exposed to hyperopic defocus by the wearing of -10D lenses for 2 or 6 h at one of 3 times of day for 5 days: Morning (7 am - 9 am: n = 13; 7 am - 1 pm: n = 6), Mid-day (12 pm - 2 pm: n = 20; 10 am - 4 pm: n = 8), or Evening (7 pm - 9 pm: n = 12; 2 pm - 8 pm: n = 11). A separate group wore monocular lenses continually as a control (n = 12). Form deprivation: Birds wore a diffuser over one eye for 2 h at one of 3 times of day for 5 days: Morning (n = 12); Mid-day (n = 19) or Evening (n = 6). For all groups, ocular dimensions were measured using high-frequency A-scan ultrasonography at noon on the first day, under inhalation anesthesia. On day 5, eye dimensions were re-measured at 12 pm, and refractive errors were measured using a Hartinger's refractometer. A subset of birds in the 2-h lens group (morning, n = 8; mid-day, n = 8; evening, n = 6), and the deprivation group (n = 6 per time point), were also measured at 6 pm, 12 am, 6 am and 12 pm on the last day of exposure, to obtain the parameters of the diurnal rhythms in axial length and choroidal thickness. The effects of 2 h of defocus depended on time of day of exposure: it stimulated eye growth when exposure was in the morning and inhibited it when it was at mid-day (change in vitreous chamber, X-C; ANOVA p < 0.0005; 120 µm vs -77 µm/5d, respectively; t-tests: p = 0.001; p = 0.01; post-hoc tests: p = 0.002). For mid-day, experimental eyes were more hyperopic (1.4 D; p < 0.0001). Similar to 2 h defocus, 6 h exposures at mid-day inhibited growth and produced hyperopia (X-C: -167 µm; t-test p = 0.005; RE: 1.8 D; p = 0.03). The effects of 2 h of FD were similar to those of hyperopic defocus in inhibiting growth for mid-day exposures, but FD inhibited growth for the morning exposures as well (Axial length: X-C: Morning: -122 µm; mid-day: -92 µm; ttests p = 0.006 and p = 0.016 respectively). Experimental eyes were more hyperopic (1.8 D; 1.0 D; p < 0.05). The rhythms in axial length were altered for the morning exposures in both conditions. Form deprivation in the morning, which caused inhibition, caused the phases of the two rhythms to shift toward one another (peaks at 6:00 am and 10:45 am for choroid and axial length respectively). Our findings imply that the retinal "integrator", and/or scleral growth regulator exhibit diurnal rhythms. Furthermore, they suggest that reading activities early in the day may be contraindicated in school children at risk of becoming myopic.


Asunto(s)
Ritmo Circadiano/fisiología , Ojo/crecimiento & desarrollo , Hiperopía/complicaciones , Privación Sensorial , Animales , Animales Recién Nacidos , Longitud Axial del Ojo/diagnóstico por imagen , Longitud Axial del Ojo/fisiopatología , Pollos , Coroides/patología , Modelos Animales de Enfermedad , Factores de Tiempo
12.
Exp Eye Res ; 154: 104-115, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27845062

RESUMEN

Animal models have shown that myopic defocus is a potent inhibitor of ocular growth: brief (1-2 h) daily periods of defocus are sufficient to counter the effects of much longer periods of hyperopic defocus, or emmetropic vision. While the variables of duration and frequency have been well-documented with regard to effect, we ask whether the efficacy of the exposures might also depend on the time of day that they are given. We also ask whether there are differential effects on the rhythms in axial length or choroidal thickness. 2-week-old chickens were divided into 2 groups: (1) "2-hr lens-wear". Chicks wore monocular +10D lenses for 2 h per day for 5 days at one of 3 times of day: 5:30 a.m. (n = 11), 12 p.m. (n = 8) or 7:30 p.m. (n = 11). (2) "2-hr minus lens-removal". Chicks wore monocular -10D lenses continually for 7 days, except for a 2-hr period when lenses were removed; the removal occurred at one of 2 times: 5:30 a.m. (n = 8) or 7:30 p.m. (n = 8). Both paradigms exposed eyes to brief myopic defocus that differed in its magnitude, and in the visual experience for the rest of the day. High frequency A-scan ultrasonography was done at the start of the experiment; on the last day, it was done at 6-hr intervals, starting at noon, over 24-hr, to assess rhythm parameters. Refractive errors were measured using a Hartinger's refractometer at the end. In both paradigms, myopic defocus in the evening was significantly more effective at inhibiting eye growth than in the morning ("2-hr lens-wear": X-C: -149 vs -83 µm/5d; "2-hr lens-removal": X-C: 91 vs 245 µm/7d; post-hoc Bonferroni test, p < 0.01 for both). Data for "noon" was similar to that of "evening". In general, the refractive errors were consistent with the eye growth. In both paradigms, a 2-way ANOVA showed that "time of day" accounted for the differences between the morning versus evening groups ("2-hr lens-wear": p = 0.0161; "2-hr lens-removal": p = 0.038). In the "plus-lens" morning exposure, the rhythm in axial length could not be fit to a sinusoid. In both paradigms, the rhythm in axial length for the evening group was phase-advanced relative to noon or morning ("2-hr lens-wear": evening vs noon; 1:24 p.m. vs 6:42 p.m.; "2-hr lens-removal": evening vs morning: 12:15 p.m. vs 6:18 p.m.; p < 0.05 for both). Finally, the amplitude of the rhythm as assessed by the "day vs night" maximum and minimum respectively, was larger in the "evening" than in the "morning" group ("2-hr lens-wear": 88 vs 38 µm; "2-hr lens-removal": 104 vs 48 µm; p < 0.05 for both). For the choroidal rhythm, there was no effect on phase, however, the amplitude was larger in most, but not all, experimental groups. These findings have potential translational applications to myopia prevention in schoolchildren, who are exposed to extended periods of hyperopic defocus during reading sessions, due to the nearness of the page. We propose that bouts of such near-work might best be scheduled later in the day, along with frequent breaks for distance vision.


Asunto(s)
Longitud Axial del Ojo/diagnóstico por imagen , Coroides/diagnóstico por imagen , Ritmo Circadiano/fisiología , Emetropía/fisiología , Ojo/crecimiento & desarrollo , Anteojos , Miopía/prevención & control , Refracción Ocular/fisiología , Animales , Pollos , Modelos Animales de Enfermedad , Miopía/diagnóstico , Miopía/fisiopatología , Privación Sensorial
13.
Exp Eye Res ; 146: 189-195, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26970497

RESUMEN

Changes in ocular growth that lead to myopia or hyperopia are associated with alterations in the circadian rhythms in eye growth, choroidal thickness and intraocular pressure in animal models of emmetropization. Recent studies have shown that light at night has deleterious effects on human health, acting via "circadian disruptions" of various diurnal rhythms, including changes in phase or amplitude. The purpose of this study was to determine the effects of brief, 2-h episodes of light in the middle of the night on the rhythms in axial length and choroidal thickness, and whether these alter eye growth and refractive error in the chick model of myopia. Starting at 2 weeks of age, birds received 2 h of light between 12:00 am and 2:00 am for 7 days (n = 12; total hours of light: 14 h). Age-matched controls had a continuous dark night (n = 14; 14L/10D). Ocular dimensions were measured using high-frequency A-scan ultrasonography on the first day of the experiment, and again on day 7, at 6-h intervals, starting at noon (12 pm, 6 pm, 12 am, 6 am, 12 pm). Measurements during the night were done under a photographic safe-light. These data were used to determine rhythm parameters of phase and amplitude. 2 groups of birds, both experimental (light at night) and control, were measured with ultrasound at various intervals over the course of 4 weeks to determine growth rates. Refractive errors were measured in 6 experimental and 6 control birds at the end of 2 weeks. Eyes of birds in a normal L/D cycle showed sinusoidal 24-h period diurnal rhythms in axial length and choroid thickness. Light in the middle of the night caused changes in both the rhythms in axial length and choroidal thickness, such that neither could be fit to a sine function having a period of 24 h. Light caused an acute, transient stimulation in ocular growth rate in the subsequent 6-h period (12 am-6 am), that may be responsible for the increased growth rate seen 4 weeks later, and the more myopic refractive error. It also abolished the increase in choroidal thickness that normally occurs between 6 pm and 12 am. We conclude that light at night alters the rhythms in axial length and choroidal thickness in an animal model of eye growth, and that these circadian disruptions might lead to the development of ametropias. These results have implications for the use of light during the night in children.


Asunto(s)
Coroides/anatomía & histología , Ritmo Circadiano/fisiología , Ojo/crecimiento & desarrollo , Luz/efectos adversos , Errores de Refracción/fisiopatología , Animales , Longitud Axial del Ojo/fisiopatología , Pollos , Coroides/fisiopatología , Modelos Animales de Enfermedad , Ojo/fisiopatología
14.
Curr Eye Res ; 40(9): 962-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25310574

RESUMEN

PURPOSE: The muscarinic M4 receptor antagonist MT3 (muscarinic toxin 3) is effective at inhibiting the development of myopia in response to form deprivation, and prevents the deprivation-induced choroidal thinning. We asked if it was equally effective in eyes wearing negative lenses. METHODS: Chicks wore monocular diffusers or -15 D lenses for 7 days. Intravitreal injections of MT3 (90 nmoles) were given on days 2, 4 and 6 (diffusers: n = 13; lenses: n = 12); saline was used as injection controls (diffusers: n = 11; lenses: n = 13). Ocular dimensions were measured with A-scan ultrasound on days 1 and 7. Refractions were measured using a Hartinger's refractometer. A third group of "normal" chicks received monocular injections of drug (n = 7) or saline (n = 7), and eyes were measured 3 and 72 h later. RESULTS: MT3 inhibited the myopia in response to form deprivation, but did not affect the compensation to negative lenses (drug versus saline: FD: -3.2 versus -7.4 D; p < 0.001; Lenses: -4.5 versus -4.9 D). The myopia inhibition in deprived eyes was due to inhibition of axial growth (610 µm versus 827 µm; p < 0.005); lens-wearing eyes grew similar to saline controls (747 µm versus 743 µm). There was no effect of the drug on the choroidal thinning in either condition. Unexpectedly, MT3 produced choroidal thinning in normal eyes (drug versus saline: -45 versus 16 µm/3 h; p < 0.05), but had no effect on refractions or ocular growth. CONCLUSIONS: MT3 does not inhibit the development of myopia in response to hyperopic defocus. It also causes choroidal thinning, an anomalous effect for a muscarinic receptor antagonist. These results support the existence of different muscarinic mechanisms in the excessive eye growth resulting from the open-loop condition of form deprivation, versus that of hyperopic defocus, a closed-loop condition.


Asunto(s)
Coroides/patología , Anteojos/efectos adversos , Miopía/prevención & control , Péptidos/administración & dosificación , Refracción Ocular/fisiología , Animales , Pollos , Coroides/efectos de los fármacos , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular , Inyecciones Intravítreas , Antagonistas Muscarínicos , Miopía/etiología , Miopía/fisiopatología , Neurotoxinas , Privación Sensorial
15.
Clin Exp Optom ; 98(6): 564-70, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26769180

RESUMEN

BACKGROUND: In hatchling chicks, the thickness of the choroid is quite variable. It has been postulated that thickness per se or the changes occurring during early life might play a causal role in the regulation of ocular growth. We tested this notion by measuring ocular dimensions in several experimental conditions that alter ocular growth and in the fellow eyes. METHODS: Chicks aged 12 to 14 days wore monocular lenses or diffusers (+10 D, n = 23; -10 D, n = 16; diffusers, n = 16) for four to five days. Fellow untreated eyes served as controls. A separate group of completely untreated birds aged eight days were also tested (n = 12). We tested two drugs known to alter ocular growth. The dopaminergic agonist quinpirole was injected daily for five days into eyes wearing negative lenses (n = 47). The muscarinic agonist oxotremorine was injected one time into normal eyes (n = 27). All eyes were measured using high-frequency A-scan ultrasonography at the start and end of the experiment. Spearman's correlation coefficient was used in all analyses. RESULTS: Choroidal thickness predicted ocular growth rates in normal eyes: eyes with thinner choroids grew faster than those with thicker choroids (p = 0.0001). Furthermore, there was a negative correlation between initial thickness and the change in thickness (p = 0.0353). By contrast, eyes wearing lenses or diffusers did not show a correlation between initial thickness and growth rate. For lens-wearing eyes injected with quinpirole, which slowed growth, initial choroidal thickness predicted subsequent growth rate (p = 0.0126), similar to normal eyes. This was not so for oxotremorine, which stimulated growth. CONCLUSIONS: The loss of the association between choroidal thickness and subsequent growth rate in eyes with experimentally altered growth implies an uncoupling of the choroidal response from the visual regulation of ocular growth. The negative correlation between initial thickness and ocular growth in eyes injected with quinpirole suggests potential therapeutic benefits to thicker choroids.


Asunto(s)
Coroides/patología , Emetropía/fisiología , Ojo/crecimiento & desarrollo , Miopía/fisiopatología , Visión Ocular/fisiología , Animales , Pollos , Modelos Animales de Enfermedad , Miopía/diagnóstico , Privación Sensorial
16.
Optom Vis Sci ; 90(11): 1167-75, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24061155

RESUMEN

PURPOSE: Both dopamine and nitric oxide (NO) have been implicated in the signal cascade mediating ocular growth inhibition. If both are part of the same pathway, which precedes the other? We tested the hypothesis that dopamine acts upstream of NO, by using two NOS inhibitors in combination with the dopamine agonist quinpirole, and measured the effects on ocular growth rate. METHODS: Chicks wore -10 D lenses or diffusers (FD) for 4 days starting at age 13 days. Experimental eyes received daily 20 µL injections of the following: quinpirole-lens: n = 12, FD: n = 20; n-ω-propyl-L-arginine (NPA)-lens: n = 6, FD: n = 4; quinpirole + NPA-lens: n = 17, FD: n = 19; and quinpirole + L-NIO-lens: n = 12, FD: n = 12. Saline injections were done as controls. High-frequency ultrasonography was done at the start, and on day 5, prior to injections and 3 hours later. Refractions were measured on day 5. RESULTS: As expected, quinpirole prevented the development of axial myopia in both paradigms. When quinpirole was combined with either NOS inhibitor, however, eyes became myopic compared to quinpirole (FD: NPA: -5.9 D vs. -3.4 D; L-NIO: -5.8 D vs. -3.4 D; lens: NPA: -3.5 D vs. -0.4 D; p < 0.05 for all; L-NIO was not significant). This was the result of a disinhibition of vitreous chamber growth versus quinpirole (FD: NPA: 401 vs. 275 µm/4 d; L-NIO: 440 vs. 275 µm/4 d; LENS: NPA: 407 vs. 253µm/4 d; L-NIO: 403 vs. 253 µm/4 d; p < 0.05). Only NPA prevented the quinpirole-induced choroidal thickening in lens-wearing eyes (0 vs. 31 µm/3 h; p < 0.05). Choroidal thickening was not inhibited by either drug in FD eyes. CONCLUSIONS: Dopamine acts upstream of NO and the choroidal response in the signal cascade mediating ocular growth inhibition in both form deprivation and negative lens wear. That neither NOS inhibitor inhibits choroidal thickening in FD eyes suggests that the choroidal mechanisms differ in the two paradigms.


Asunto(s)
Arginina/análogos & derivados , Agonistas de Dopamina/farmacología , Ojo/crecimiento & desarrollo , Miopía/patología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Ornitina/análogos & derivados , Quinpirol/farmacología , Animales , Animales Recién Nacidos , Arginina/farmacología , Pollos , Modelos Animales de Enfermedad , Combinación de Medicamentos , Ojo/diagnóstico por imagen , Ojo/enzimología , Inyecciones Intraoculares , Miopía/diagnóstico por imagen , Miopía/prevención & control , Ornitina/farmacología , Refracción Ocular , Privación Sensorial , Ultrasonografía
18.
Ophthalmic Physiol Opt ; 33(3): 245-56, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23662958

RESUMEN

PURPOSE: In chicks, ocular growth inhibition is associated with choroidal thickening and growth stimulation with choroidal thinning, suggesting a mechanistic link between the two responses. Because muscarinic antagonists inhibit the development of myopia in animal models by a non-accommodative mechanism, we tested the hypothesis that agonists would stimulate eye growth and thin the choroid. We also hypothesized that the effective growth-inhibiting antagonists would thicken the choroid. METHODS: Chicks, age 12-16 days, were used. In vivo: Agonists: Single intravitreal injections (20 µL) of oxotremorine (oxo), pilocarpine (pilo), carbachol (carb), or arecaidine (arec) were given to otherwise untreated eyes. A-scan ultrasonography was done prior to injections, and at 3, 24, 48 and 72 h. Antagonists: -10D lenses were worn on one eye for 4 days. Atropine (atro), pirenzepine (pirz), oxyphenonium (oxy) or dicyclomine (dicy) were injected (20 µL) daily into lens-wearing eyes; saline injections were done as controls. Ultrasonography was done on d1 and on d4; on d4 measurements were done before and 3 h after injections. In vitro: Paired eyecups of retinal pigment epithelium (RPE), choroid and sclera were made from 1-week old chicks. All drugs except atropine were tested on one eyecup, its pair in plain medium. Choroidal thickness was measured at various times over 48 h. RESULTS: Agonists: In vivo, oxotremorine caused an increase in the rate of axial elongation (drug vs saline: 24-72 h: 338 µm vs 250 µm; p < 0.001). All except pilocarpine caused choroidal thinning by 24 h (oxo, carb and arec vs saline: -25, -35 and -46 µm vs 3 µm). In vitro, all agonists thinned choroids by 24 h (oxo: -6 vs 111 µm; pilo: 45 vs 212 µm; carb: -58 vs 65 µm; arec: 47 vs 139 µm; p < 0.05). Antagonists: Atropine, pirenzepine and oxyphenonium inhibited the development of myopia in negative lens-wearing eyes, and also caused choroidal thickening (drug vs saline: 42, 80, 88 vs 10 µm per 3 h). In vitro, pirenzepine thickened choroids by 3 h (77 vs 2 µm, p < 0.01). CONCLUSIONS: Muscarinic agonists caused choroidal thinning in intact eyes and eyecups, supporting a role for acetylcholine in the choroidal response to hyperopic defocus or form deprivation. Only oxotremorine stimulated eye growth, which is inconsistent with a muscarinic receptor mechanism for antagonist-induced eye growth inhibition. The dissociation between choroidal thinning and ocular growth stimulation for the other agonists in vivo suggest separate pathways for the two.


Asunto(s)
Enfermedades de la Coroides/tratamiento farmacológico , Coroides/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacocinética , Animales , Pollos , Coroides/crecimiento & desarrollo , Enfermedades de la Coroides/fisiopatología , Lentes de Contacto , Modelos Animales de Enfermedad , Hiperopía/tratamiento farmacológico , Hiperopía/fisiopatología , Inyecciones Intravítreas , Agonistas Muscarínicos/administración & dosificación , Antagonistas Muscarínicos/administración & dosificación
19.
Ophthalmic Physiol Opt ; 33(3): 355-61, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23662966

RESUMEN

In the following point-counterpoint article, internationally-acclaimed myopia researchers were challenged to defend the two opposing sides of the topic defined by the title; their contributions, which appear in the order Point followed by Counterpoint, were peer-reviewed by both the editorial team and an external reviewer. Independently of the invited authors, the named member of the editorial team provided an Introduction and Summary, both of which were reviewed by the other members of the editorial team. By their nature, views expressed in each section of the Point-Counterpoint article are those of the author concerned and may not reflect the views of all of the authors.


Asunto(s)
Emetropía/fisiología , Percepción de Forma/fisiología , Miopía/fisiopatología , Privación Sensorial/fisiología , Animales , Pollos , Modelos Animales de Enfermedad , Dopamina/fisiología
20.
Exp Eye Res ; 114: 25-34, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23298452

RESUMEN

Many ocular processes show diurnal oscillations that optimize retinal function under the different conditions of ambient illumination encountered over the course of the 24 h light/dark cycle. Abolishing the diurnal cues by the use of constant darkness or constant light results in excessive ocular elongation, corneal flattening, and attendant refractive errors. A prevailing hypothesis is that the absence of the Zeitgeber of light and dark alters ocular circadian rhythms in some manner, and results in an inability of the eye to regulate its growth in order to achieve emmetropia, the matching of the front optics to eye length. Another visual manipulation that results in the eye growth system going into a "default" mode of excessive growth is form deprivation, in which a translucent diffuser deprives the eye of visual transients (spatial or temporal) while not significantly reducing light levels; these eyes rapidly elongate and become myopic. It has been hypothesized that form deprivation might constitute a type of "constant condition" whereby the absence of visual transients drives the eye into a similar default mode as that in response to constant light or dark. Interest in the potential influence of light cycles and ambient lighting in human myopia development has been spurred by a recent study showing a positive association between the amount of time that children spent outdoors and a reduced prevalence of myopia. The growing eyes of chickens and monkeys show a diurnal rhythm in axial length: Eyes elongate more during the day than during the night. There is also a rhythm in choroidal thickness that is in approximate anti-phase to the rhythm in eye length. The phases are altered in eyes growing too fast, in response to form deprivation or negative lenses, or too slowly, in response to myopic defocus, suggesting an influence of phase on the emmetropization system. Other potential rhythmic influences include dopamine and melatonin, which form a reciprocal feedback loop, and signal "day" and "night" respectively. Retinal dopamine is reduced during the day in form deprived myopic eyes, and dopamine D2 agonists inhibit ocular growth in animal models. Rhythms in intraocular pressure as well, may influence eye growth, perhaps as a mechanical stimulus triggering changes in scleral extracellular matrix synthesis. Finally, evidence shows varying influences of environmental lighting parameters on the emmetropization system, such as high intensity light being protective against myopia in chickens. This review will cover the evidence for the possible influence of these various factors on ocular growth. The recognition that ocular rhythms may play a role in emmetropization is a first step toward understanding how they may be manipulated in treatment therapies to prevent myopia in humans.


Asunto(s)
Ritmo Circadiano/fisiología , Ojo/crecimiento & desarrollo , Miopía/fisiopatología , Animales , Longitud Axial del Ojo/fisiopatología , Emetropía/fisiología , Ojo/fisiopatología , Humanos , Miopía/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...