Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Temperature (Austin) ; 11(2): 137-156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846524

RESUMEN

Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature during and after CWI. 21 healthy men completed randomly 2 protocols. Both protocols consisted of a 48 minutes heating cycling exercise followed by 3 recovery periods (R1-R3), but they differed in R2. R1 lasted 20 minutes in a passive semi-seated position on a physiotherapy table at ambient room temperature. Depending on the protocol, R2 lasted 15 minutes at either ambient condition (R2_AMB) or in a CWI condition at 10°C up to the iliac crest (R2_CWI). R3 lasted 40 minutes at AMB while favoring rewarming after R2_CWI. This was followed by 10 minutes of cycling. Compared to R2_AMB, R2_CWI ended at higher V ˙ O2 in the non-immersed body part due to thermogenesis (7.16(2.15) vs. 4.83(1.62) ml.min-1.kg-1) and lower femoral artery blood flow (475(165) vs. 704(257) ml.min-1) (p < 0.001). Only after CWI, R3 showed a progressive decrease in vastus and gastrocnemius medialis O2 saturation, significant after 34 minutes (p < 0.001). As blood flow did not differ from the AMB protocol, this indicated local thermogenesis in the immersed part of the body. After CWI, a lower gastrointestinal temperature on resumption of cycling compared to AMB (36.31(0.45) vs. 37.30(0.49) °C, p < 0.001) indicated incomplete muscle thermogenesis. In conclusion, the rewarming period after CWI was non-linear and metabolically costly. Immersion and rewarming should be considered as a continuum rather than separate events.

2.
Scand J Med Sci Sports ; 34(5): e14643, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700004

RESUMEN

PURPOSE: Delayed structural and functional recovery after a 20 km graded running race was analyzed with respect to the sex effect. METHODS: Thirteen female and 14 male recreational runners completed the race and three test sessions: one before (PRE) and two after, once on Day 1 or 2 (D1-2) and then on Day 3 or 4 (D3-4). Muscle damage was assessed indirectly using ultrasonography to quantify changes in cross-sectional area (CSA) of 10 lower-limb muscles. Delayed onset of muscle soreness (DOMS) was assessed for three muscle groups. Functional recovery was quantified by kinetic analysis of a squat jump (SJ) and a drop jump (DJ) test performed on a sledge ergometer. Linear mixed models were used to assess control group reproducibility and recovery patterns according to sex. RESULTS: Regardless of sex, DOMS peaked at D1-2 for all muscle groups and resolved at D3-4. CSA was increased in each muscle group until D3-4, especially in the semimembranosus muscle. A specific increase was found in the short head of the biceps femoris in women. Regardless of sex, SJ and DJ performances declined up to D3-4. Depending on the muscle, positive and/or negative correlations were found between structural and functional changes. Some of these were sex-specific. CONCLUSION: Structural and functional recovery was incomplete in both sexes up to D3-4, although DOMS had disappeared. More emphasis should be placed on hamstring muscle recovery. Highlighting the intermuscular compensations that can occur during multi-joint testing tasks, the structural-functional relationships were either positive or negative, muscle- and sex-dependent.


Asunto(s)
Extremidad Inferior , Músculo Esquelético , Mialgia , Ultrasonografía , Humanos , Femenino , Mialgia/fisiopatología , Masculino , Adulto , Músculo Esquelético/fisiología , Músculo Esquelético/diagnóstico por imagen , Extremidad Inferior/fisiología , Extremidad Inferior/diagnóstico por imagen , Factores Sexuales , Carrera/fisiología , Adulto Joven , Recuperación de la Función , Rendimiento Atlético/fisiología
3.
Sci Rep ; 14(1): 2707, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302569

RESUMEN

With human space exploration back in the spotlight, recent studies have investigated the neuromuscular adjustments to simulated hypogravity running. They have examined the activity of individual muscles, whereas the central nervous system may rather activate groups of functionally related muscles, known as muscle synergies. To understand how locomotor control adjusts to simulated hypogravity, we examined the temporal (motor primitives) and spatial (motor modules) components of muscle synergies in participants running sequentially at 100%, 60%, and 100% body weight on a treadmill. Our results highlighted the paradoxical nature of simulated hypogravity running: The reduced mechanical constraints allowed for a more flexible locomotor control, which correlated with the degree of spatiotemporal adjustments. Yet, the increased temporal (shortened stance phase) and sensory (deteriorated proprioceptive feedback) constraints required wider motor primitives and a higher contribution of the hamstring muscles during the stance phase. These results are a first step towards improving astronaut training protocols.


Asunto(s)
Músculos Isquiosurales , Carrera , Vuelo Espacial , Humanos , Carrera/fisiología , Hipogravedad , Sistema Nervioso Central , Músculo Esquelético/fisiología
4.
Heliyon ; 9(10): e20309, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37800066

RESUMEN

Conflicting results on the effects of occlusal proprioceptive information on standing sway have been reported in the literature, partly due to the heterogeneity of the occlusal criterion studied and the experimental protocol used. In this study, occlusal functions, different mandibular positions and visual conditions were used to investigate the involvement of occlusal proprioception information in static postural balance. Postural adjustments of 26 healthy young adults, divided into Class I malocclusion and Class I normocclusion groups, were studied in upright position, in five mandibular positions (1 free, 2 centric and 2 eccentric), with and without vision. Due to different reported test durations, postural parameters were examined for the first and last halves of the 51.2 s acquisition time. A permutation ANOVA with 4 factors was used: group, mandibular position, vision, time window. Mean length of CoP displacement was shorter with vision (ES = 0.30) and more affected by vision loss in the free than in the intercuspal mandibular position (ES = 0.76 vs. 0.39), which has more tooth contacts. The malocclusion group was more affected by vision loss (ES = 0.64). Unexpectedly, with vision, the mean length was smaller in one eccentric occlusion side compared to the other (ES = 0.51), but independent of the left or right side, and more affected by vision loss (ES = 1.04 vs. ES = 0.71). The first-time window of the acquisition time, i.e. 25.6 s, was sufficient to demonstrate the impact of dental occlusion, except for the sway area. Comparison of the two visual conditions was informative. With vision, the weight of occlusal proprioception was not strictly related to occlusal characteristics (number of teeth in contact; centered or eccentric mandibular position), and it was asymmetrical. Without vision, the lack of difference between groups and mandibular positions suggested a sensory reweighting, probably to limit postural disturbance.

5.
Front Physiol ; 14: 1201253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601641

RESUMEN

Motor control, including locomotion, strongly depends on the gravitational field. Recent developments such as lower-body positive pressure treadmills (LBPPT) have enabled studies on Earth about the effects of reduced body weight (BW) on walking and running, up to 60% BW. The present experiment was set up to further investigate adaptations to a more naturalistic simulated hypogravity, mimicking a Martian environment with additional visual information during running sessions on LBPPT. Twenty-nine participants performed three sessions of four successive five-min runs at preferred speed, alternating Earth- or simulated Mars-like gravity (100% vs. 38% BW). They were displayed visual scenes using a virtual reality headset to assess the effects of coherent visual flow while running. Running performance was characterized by normal ground reaction force and pelvic accelerations. The perceived upright and vection (visually-induced self-motion sensation)in dynamic visual environments were also investigated at the end of the different sessions. We found that BW reduction induced biomechanical adaptations independently of the visual context. Active peak force and stance time decreased, while flight time increased. Strong inter-individual differences in braking and push-off times appeared at 38% BW, which were not systematically observed in our previous studies at 80% and 60% BW. Additionally, the importance given to dynamic visual cues in the perceived upright diminished at 38% BW, suggesting an increased reliance on the egocentric body axis as a reference for verticality when the visual context is fully coherent with the previous locomotor activity. Also, while vection was found to decrease in case of a coherent visuomotor coupling at 100% BW (i.e., post-exposure influence), it remained unaffected by the visual context at 38% BW. Overall, our findings suggested that locomotor and perceptual adaptations were not similarly impacted, depending on the -simulated- gravity condition and visual context.

6.
Front Physiol ; 14: 1212198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334048

RESUMEN

Introduction: Originally developed for astronauts, lower body positive pressure treadmills (LBPPTs) are increasingly being used in sports and clinical settings because they allow for unweighted running. However, the neuromuscular adjustments to unweighted running remain understudied. They would be limited for certain lower limb muscles and interindividually variable. This study investigated whether this might be related to familiarization and/or trait anxiety. Methods: Forty healthy male runners were divided into two equal groups with contrasting levels of trait anxiety (high, ANX+, n = 20 vs. low, ANX-, n = 20). They completed two 9-min runs on a LBPPT. Each included three consecutive 3-min conditions performed at 100%, 60% (unweighted running), and 100% body weight. Normal ground reaction force and electromyographic activity of 11 ipsilateral lower limb muscles were analyzed for the last 30 s of each condition in both runs. Results: Unweighted running showed muscle- and stretch-shortening cycle phase-dependent neuromuscular adjustments that were repeatable across both runs. Importantly, hamstring (BF, biceps femoris; STSM, semitendinosus/semimembranosus) muscle activity increased during the braking (BF: +44 ± 18%, p < 0.001) and push-off (BF: +49 ± 12% and STSM: +123 ± 14%, p < 0.001 for both) phases, and even more so for ANX+ than for ANX-. During the braking phase, only ANX+ showed significant increases in BF (+41 ± 15%, p < 0.001) and STSM (+53 ± 27%, p < 0.001) activities. During the push-off phase, ANX+ showed a more than twofold increase in STSM activity compared to ANX- (+119 ± 10% vs. +48 ± 27, p < 0.001 for both). Conclusion: The increase in hamstring activity during the braking and push-off phases may have accelerated the subsequent swing of the free-leg, likely counteracting the unweighting-induced slowing of stride frequency. This was even more pronounced in ANX+ than in ANX-, in an increased attempt not to deviate from their preferred running pattern. These results highlight the importance of individualizing LBPPT training and rehabilitation protocols, with particular attention to individuals with weak or injured hamstrings.

7.
J Physiol Anthropol ; 42(1): 9, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264461

RESUMEN

BACKGROUND: In endurance running, elite Kenyan runners are characterized by longer thigh, shank, and Achilles tendon (AT) lengths combined with shorter fascicles and larger medial gastrocnemius (MG) pennation angles than elite Japanese runners. These muscle-tendon characteristics may contribute to the running performance of Kenyans. Furthermore, these specific lower-leg musculoskeletal architectures have been confirmed not only in elite Kenyan runners but also in non-athletic Kenyans since early childhood. However, it remains questionable whether the differences in muscle-tendon architecture between Kenyans and Japanese differ from those of European Caucasians. Therefore, this study aimed to compare anthropometry and muscle-tendon architecture of young non-athletic Kenyan males with their Japanese and French counterparts. METHODS: A total of 235 young non-athletic males, aged 17-22 years, volunteered. The anthropometric measures, thigh, and shank lengths, as well as AT and MG muscle architecture, were measured using ultrasonography and a tape measure. Inter-group differences in anthropometry and muscle-tendon architecture were tested using one-way ANOVA and ANCOVA analyses controlling for shank length and muscle thickness. RESULTS: The anthropometric and muscle-tendon characteristics of the non-athletic French were closer to those of the Kenyans than to those of the Japanese. However, the ultrasonography analysis confirmed that the non-athletic Kenyans had the longest AT as well as the shortest MG fascicles and the largest pennation angle compared to the French and Japanese, even after controlling for shank length and muscle thickness with ANCOVA, respectively. CONCLUSIONS: These results confirmed the specificity of the muscle-tendon architecture of the triceps surae in Kenyans in comparison to their Japanese and French counterparts in non-athletic adults. This study provides additional support to the fact that Kenyans may have musculotendinous advantages in endurance running.


Asunto(s)
Tendón Calcáneo , Músculo Esquelético , Carrera , Humanos , Masculino , Tendón Calcáneo/anatomía & histología , Tendón Calcáneo/fisiología , Pueblos del Este de Asia , Kenia , Pierna/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Ultrasonografía , Adolescente , Adulto Joven , Pueblo de África Oriental , Carrera/fisiología , Resistencia Física
8.
Heliyon ; 8(6): e09573, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35756118

RESUMEN

The acute and delayed phases of the functional recovery pattern after running exercise have been studied mainly in men. However, it seems that women are less fatigable and/or recover faster than men, at least when tested in isometric condition. After a 20 km graded running race, the influence of sex on the delayed phase of recovery at 2-4 days was studied using a horizontal ballistic force-velocity test. Nine female and height male recreational runners performed maximal concentric push-offs at four load levels a week before the race (PRE), 2 and 4 days (D2 and D4) later. Ground reaction forces and surface electromyographic (EMG) activity from 8 major lower limb muscles were recorded. For each session, the mechanical force-velocity-power profile (i.e. theoretical maximal values of force ( F ¯ 0), velocity ( V ¯ 0), and power ( P ¯ max)) was computed. Mean EMG activity of each recorded muscle and muscle synergies (three for both men and women) were extracted. Independently of the testing sessions, men and women differed regarding the solicitation of the bi-articular thigh muscles (medial hamstring muscles and rectus femoris). At mid-push-off, female made use of more evenly distributed lower limb muscle activities than men. No fatigue effect was found for both sexes when looking at the mean ground reaction forces. However, the force-velocity profile varied by sex throughout the recovery: only men showed a decrease of both V ¯ 0 (p < 0.05) and P ¯ max (p < 0.01) at D2 compared to PRE. Vastus medialis activity was reduced for both men and women up to D4, but only male synergies were impacted at D2: the center of activity of the first and second synergies was reached later. This study suggests that women could recover earlier in a dynamic multi-joint task and that sex-specific organization of muscle synergies may have contributed to their different recovery times after such a race.

9.
Acta Physiol (Oxf) ; 235(2): e13821, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403817

RESUMEN

AIM: The specificity of muscle-tendon and foot architecture of elite Kenyan middle- and long-distance runners has been found to contribute to their superior running performance. To investigate the respective influence of genetic endowment and training on these characteristics, we compared leg and foot segmental lengths as well as muscle-tendon architecture of Kenyans and Japanese males (i) from infancy to adulthood and (ii) non-athletes versus elite runners. METHODS: The 676 participants were divided according to their nationality (Kenyans and Japanese), age (nine different age groups for non-athletes) and performance level in middle- and long-distance races (non-athlete, non-elite and elite adult runners). Shank and Achilles tendon (AT) lengths, medial gastrocnemius (MG) fascicle length, pennation angle and muscle thickness, AT moment arm (MAAT ), and foot lever ratio were measured. RESULTS: Above 8 years old, Kenyans had a longer shank and AT, shorter fascicle, greater pennation angle, thinner MG muscle as well as longer MAAT , with lower foot lever ratio than age-matched Japanese. Among adults of different performance levels and independently of the performance level, Kenyans had longer shank, AT and MAAT , thinner MG muscle thickness, and lower foot lever ratio than Japanese. The decrease in MG fascicle length and increase pennation angle observed for the adult Japanese with the increase in performance level resulted in a lack of difference between elite Kenyans and Japanese. CONCLUSION: The specificity of muscle-tendon and foot architecture of elite Kenyan runners could result from genetic endowment and contribute to the dominance of Kenyans in middle- and long-distance races.


Asunto(s)
Tendón Calcáneo , Administración Financiera , Adulto , Niño , Humanos , Japón , Kenia , Masculino , Músculo Esquelético/fisiología
10.
Sports Med ; 52(6): 1235-1257, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35122632

RESUMEN

In recent years, there has been a significant expansion in female participation in endurance (road and trail) running. The often reported sex differences in maximal oxygen uptake (VO2max) are not the only differences between sexes during prolonged running. The aim of this narrative review was thus to discuss sex differences in running biomechanics, economy (both in fatigue and non-fatigue conditions), substrate utilization, muscle tissue characteristics (including ultrastructural muscle damage), neuromuscular fatigue, thermoregulation and pacing strategies. Although males and females do not differ in terms of running economy or endurance (i.e. percentage VO2max sustained), sex-specificities exist in running biomechanics (e.g. females have greater non-sagittal hip and knee joint motion compared to males) that can be partly explained by anatomical (e.g. wider pelvis, larger femur-tibia angle, shorter lower limb length relative to total height in females) differences. Compared to males, females also show greater proportional area of type I fibres, are more able to use fatty acids and preserve carbohydrates during prolonged exercise, demonstrate a more even pacing strategy and less fatigue following endurance running exercise. These differences confer an advantage to females in ultra-endurance performance, but other factors (e.g. lower O2 carrying capacity, greater body fat percentage) counterbalance these potential advantages, making females outperforming males a rare exception. The present literature review also highlights the lack of sex comparison in studies investigating running biomechanics in fatigue conditions and during the recovery process.


Asunto(s)
Resistencia Física , Carrera , Ejercicio Físico/fisiología , Femenino , Humanos , Extremidad Inferior , Masculino , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Carrera/fisiología , Caracteres Sexuales , Factores Sexuales
11.
Front Physiol ; 12: 649396, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815153

RESUMEN

This study investigated the sex influence on the acute and delayed fatigue effects of a 20 km graded running race. Eighteen recreational runners, 10 women and 8 men, completed the race. The testing protocol included five sessions: a week before the race (PRE), 35 ± 15 min after (POST), 2 h, 2 and 4 days (2D and 4D) later. Each session included uni- and bilateral maximal isometric voluntary contractions of the knee extensors (MVC), a squat jump (SJ), and a drop jump (DJ). Acute and delayed muscle soreness (DOMS) were evaluated for the quadriceps, hamstring and triceps surae muscle groups. The 2D and 4D sessions included also a horizontal force-velocity test (HF-V) performed under five resistive conditions. For each test, a set of key variables was computed to characterize the lower limb functional recovery. Mixed ANOVA analyses revealed significant (sex × time) interactions, with larger acute drops for men in MVCs and earlier recovery for women in the bilateral MVC (p < 0.001) and DJ (p < 0.05) tests. Only women reported DOMS for the hamstrings at 2D (p < 0.001) and showed small improvements in pure concentric SJ (p < 0.05) and HF-V (p < 0.01) tests at 4D. As expected, DOMS disappeared prior to the complete functional recovery. These results confirmed the combined influence of testing task and sex on the functional recovery pattern while supporting a lesser and faster recovery in women. The originality of this study lies in the complexity and sex-dependence of the functional recovery pattern revealed by a multiple factorial analysis which was used to identify the most discriminating tests and variables in the recovery pattern. The obtained clusters highlighted some recovery profiles associated with greater risks of injury when starting to run again. However, the lack of sex × time interaction for normalized values emphasizes the major influence of men's initially higher functional values compared to women.

12.
Int J Sports Physiol Perform ; 16(7): 1008-1013, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33639610

RESUMEN

OBJECTIVES: To identify relevant physiological, mechanical, and strength indices to improve the evaluation of elite mountain bike riders competing in the current Cross-Country Olympic (XCO) format. METHODS: Considering the evolution of the XCO race format over the last decade, the present testing protocol adopted a battery of complementary laboratory cycling tests: a maximal aerobic consumption, a force-velocity test, and a multi-short-sprint test. A group of 33 elite-level XCO riders completed the entire testing protocol and at least 5 international competitions. RESULTS: Very large correlations were found between the XCO performance and maximal aerobic power output (r = .78; P < .05), power at the second ventilation threshold (r = .83; P < .05), maximal pedaling force (r = .77; P < .05), and maximum power in the sixth sprint (r = .87; P < .05) of the multi-short-sprint test. A multiple regression model revealed that the normalized XCO performance was predicted at 89.2% (F3,29 = 89.507; r = .95; P < .001) by maximum power in the sixth sprint (ß = 0.602; P < .001), maximal pedaling rate (ß = 0.309; P < .001), and relative maximal aerobic power output (ß = 0.329; P < .001). DISCUSSION: Confirming our expectations, the current XCO performance was highly correlated with a series of physiological and mechanical parameters reflecting the high level of acyclic and intermittent solicitation of both aerobic and anaerobic metabolic pathways and the required qualities of maximal force and velocity. CONCLUSION: The combination of physiological, mechanical, and strength characteristics may thus improve the prediction of elite XCO cyclists' performance. It seems of interest to evaluate the ability to repeatedly produce brief intensive efforts with short active recovery periods.


Asunto(s)
Rendimiento Atlético , Deportes , Ciclismo , Prueba de Esfuerzo , Humanos
13.
Artículo en Inglés | MEDLINE | ID: mdl-30555823

RESUMEN

Transhumeral amputees face substantial difficulties in efficiently controlling their prosthetic limb, leading to a high rate of rejection of these devices. Actual myoelectric control approaches make their use slow, sequential and unnatural, especially for these patients with a high level of amputation who need a prosthesis with numerous active degrees of freedom (powered elbow, wrist, and hand). While surgical muscle-reinnervation is becoming a generic solution for amputees to increase their control capabilities over a prosthesis, research is still being conducted on the possibility of using the surface myoelectric patterns specifically associated to voluntary Phantom Limb Mobilization (PLM), appearing naturally in most upper-limb amputees without requiring specific surgery. The objective of this study was to evaluate the possibility for transhumeral amputees to use a PLM-based control approach to perform more realistic functional grasping tasks. Two transhumeral amputated participants were asked to repetitively grasp one out of three different objects with an unworn eight-active-DoF prosthetic arm and release it in a dedicated drawer. The prosthesis control was based on phantom limb mobilization and myoelectric pattern recognition techniques, using only two repetitions of each PLM to train the classification architecture. The results show that the task could be successfully achieved with rather optimal strategies and joint trajectories, even if the completion time was increased in comparison with the performances obtained by a control group using a simple GUI control, and the control strategies required numerous corrections. While numerous limitations related to robustness of pattern recognition techniques and to the perturbations generated by actual wearing of the prosthesis remain to be solved, these preliminary results encourage further exploration and deeper understanding of the phenomenon of natural residual myoelectric activity related to PLM, since it could possibly be a viable option in some transhumeral amputees to extend their control abilities of functional upper limb prosthetics with multiple active joints without undergoing muscular reinnervation surgery.

14.
Sci Rep ; 8(1): 15459, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337602

RESUMEN

There is an increasing need to extend the control possibilities of upper limb amputees over their prosthetics, especially given the development of devices with numerous active joints. One way of feeding pattern recognition myoelectric control is to rely on the myoelectric activities of the residual limb associated with phantom limb movements (PLM). This study aimed to describe the types, characteristics, potential influencing factors and trainability of upper limb PLM. Seventy-six below- and above-elbow amputees with major amputation underwent a semi-directed interview about their phantom limb. Amputation level, elapsed time since amputation, chronic pain and use of prostheses of upper limb PLM were extracted from the interviews. Thirteen different PLM were found involving the hand, wrist and elbow. Seventy-six percent of the patients were able to produce at least one type of PLM; most of them could execute several. Amputation level, elapsed time since amputation, chronic pain and use of myoelectric prostheses were not found to influence PLM. Five above-elbow amputees participated in a PLM training program and consequently increased both endurance and speed of their PLM. These results clearly encourage further research on PLM-associated muscle activation patterns for future PLM-based modes of prostheses control.


Asunto(s)
Miembros Artificiales , Miembro Fantasma/fisiopatología , Extremidad Superior , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
IEEE Int Conf Rehabil Robot ; 2017: 1239-1245, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813991

RESUMEN

An arm amputation is extremely invalidating since many of our daily tasks require bi-manual and precise control of hand movements. Perfect hand prostheses should therefore offer a natural, intuitive and cognitively simple control over their numerous biomimetic active degrees of freedom. While efficient polydigital prostheses are commercially available, their control remains complex to master and offers limited possibilities, especially for high amputation levels. In this pilot study, we demonstrate the possibility for upper-arm amputees to intuitively control a polydigital hand prosthesis by using surface myoelectric activities of residual limb muscles (sEMG) associated with phantom limb movements, even if these residual arm muscles on which the phantom activity is measured were not naturally associated with hand movements before amputation. Using pattern recognition methods, three arm amputees were able, without training, to initiate 5-8 movements of a robotic hand (including individual finger movements) by simply mobilizing their phantom limb while the robotic hand was mimicking the action in real time. This innovative control approach could offer to numerous upper-limb amputees an access to recent biomimetic prostheses with multiple controllable joints, without requiring surgery or complex training; and might deeply change the way the phantom limb is apprehended by both patients and clinicians.


Asunto(s)
Amputados/rehabilitación , Miembros Artificiales , Electromiografía/métodos , Mano/fisiopatología , Miembro Fantasma/fisiopatología , Procesamiento de Señales Asistido por Computador , Adulto , Anciano , Algoritmos , Femenino , Dedos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Reconocimiento de Normas Patrones Automatizadas/métodos , Proyectos Piloto , Proyectos de Investigación
16.
PLoS One ; 12(4): e0176508, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28426783

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0168545.].

17.
Pediatr Exerc Sci ; 29(1): 73-83, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27617981

RESUMEN

PURPOSE: This study examined the effects of a five-week intervention combining vigorous interval training (VIT) with diet among twenty-four obese adolescents. Fourteen girls and ten boys (aged 14-15) schooled in a pediatric rehabilitation center participated. METHODS: The VIT intensity was targeted and remained above 80% of maximal heart rate (HR) and over six kilocalories per minute. Pre- and postintervention measures were body composition (BMI, weight, body fat percentage), physical self-perceptions (PSP), physical fitness (6-min walking distance and work) and its associated physiological responses (HRpeak and blood lactate concentration). A series of two-way analyses of variance or covariance controlling for weight loss were used to examine the changes. RESULTS: Significant improvements were found in body composition, physical fitness and PSP (endurance, activity level, sport competence, global physical self-concept and appearance). In addition, boys presented higher levels of perceived strength and global physical self-concept than girls. Finally, there was a significant increase in perceived endurance, sport competence, and global physical self-concept in girls only. CONCLUSION: This five-week VIT program combined with diet represents an effective means for improving body composition, physical fitness, and PSP in obese adolescents, the effects on PSP being larger among girls.


Asunto(s)
Composición Corporal/fisiología , Obesidad Infantil/psicología , Obesidad Infantil/terapia , Aptitud Física/fisiología , Autoimagen , Adolescente , Dieta , Terapia por Ejercicio , Femenino , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Masculino
18.
IEEE Trans Neural Syst Rehabil Eng ; 25(1): 68-77, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27164596

RESUMEN

Decoding finger and hand movements from sEMG electrodes placed on the forearm of transradial amputees has been commonly studied by many research groups. A few recent studies have shown an interesting phenomenon: simple correlations between distal phantom finger, hand and wrist voluntary movements and muscle activity in the residual upper arm in transhumeral amputees, i.e., of muscle groups that, prior to amputation, had no physical effect on the concerned hand and wrist joints. In this study, we are going further into the exploration of this phenomenon by setting up an evaluation study of phantom finger, hand, wrist and elbow (if present) movement classification based on the analysis of surface electromyographic (sEMG) signals measured by multiple electrodes placed on the residual upper arm of five transhumeral amputees with a controllable phantom limb who did not undergo any reinnervation surgery. We showed that with a state-of-the-art classification architecture, it is possible to correctly classify phantom limb activity (up to 14 movements) with a rather important average success (over 80% if considering basic sets of six hand, wrist and elbow movements) and to use this pattern recognition output to give online control of a device (here a graphical interface) to these transhumeral amputees. Beyond changing the way the phantom limb condition is apprehended by both patients and clinicians, such results could pave the road towards a new control approach for transhumeral amputated patients with a voluntary controllable phantom limb. This could ease and extend their control abilities of functional upper limb prosthetics with multiple active joints without undergoing muscular reinnervation surgery.


Asunto(s)
Codo/fisiopatología , Electromiografía/métodos , Dedos/fisiopatología , Mano/fisiopatología , Miembro Fantasma/fisiopatología , Muñeca/fisiopatología , Adulto , Anciano , Gestos , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis y Desempeño de Tareas , Volición
19.
PLoS One ; 11(12): e0168545, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27992539

RESUMEN

Amongst reduced gravity simulators, the lower body positive pressure (LBPP) treadmill is emerging as an innovative tool for both rehabilitation and fundamental research purposes as it allows running while experiencing reduced vertical ground reaction forces. The appropriate use of such a treadmill requires an improved understanding of the associated neuromechanical changes. This study concentrates on the runner's adjustments to LBPP-induced unweighting and reloading during running. Nine healthy males performed two running series of nine minutes at natural speed. Each series comprised three sequences of three minutes at: 100% bodyweight (BW), 60 or 80% BW, and 100% BW. The progressive unweighting and reloading transitions lasted 10 to 15 s. The LBPP-induced unweighting level, vertical ground reaction force and center of mass accelerations were analyzed together with surface electromyographic activity from 6 major lower limb muscles. The analyses of stride-to-stride adjustments during each transition established highly linear relationships between the LBPP-induced progressive changes of BW and most mechanical parameters. However, the impact peak force and the loading rate systematically presented an initial 10% increase with unweighting which could result from a passive mechanism of leg retraction. Another major insight lies in the distinct neural adjustments found amongst the recorded lower-limb muscles during the pre- and post-contact phases. The preactivation phase was characterized by an overall EMG stability, the braking phase by decreased quadriceps and soleus muscle activities, and the push-off phase by decreased activities of the shank muscles. These neural changes were mirrored during reloading. These neural adjustments can be attributed in part to the lack of visual cues on the foot touchdown. These findings highlight both the rapidity and the complexity of the neuromechanical changes associated with LBPP-induced unweighting and reloading during running. This in turn emphasizes the need for further investigation of the evolution over time of these neuromechanical changes.


Asunto(s)
Extremidad Inferior/fisiología , Modelos Biológicos , Contracción Muscular/fisiología , Relajación Muscular/fisiología , Músculo Esquelético/fisiología , Carrera/fisiología , Adolescente , Adulto , Fenómenos Biomecánicos , Electromiografía , Humanos , Masculino
20.
J Sports Sci Med ; 15(3): 451-459, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27803623

RESUMEN

Among the running field tests that measure aerobic fitness indirectly, the 20-m shuttle run test is the one most commonly used among obese youth. However, this back and forth running test induces premature cessation of exercise in this population. The present study aimed to examine the psycho-physiological responses of obese adolescents to an intermittent (15-15) progressive and maximal run test as compared with a continuous shuttle run test. Eleven obese adolescents (age: 14-15 years; BMI = 34.01 ± 5.30 kg·m-2) performed both tests. A two-way ANOVA examined the main effects of the running test, participant's sex, and their interaction on maximal aerobic performance (net exercise duration and final velocity), physiological values (heart rate, pulmonary oxygen uptake, respiratory exchange ratio and blood lactate concentration) and psychological responses (rating of perceived exertion, and physical self-perceptions). Oxygen uptake and heart-rate values at 9 km·h-1 were also compared. Compared with a 20-m shuttle run, the 15-15 test induced lower pulmonary oxygen uptake values at 9 km/h (28.3 ± 2.7 vs. 35.4 ± 2.7 ml·min-1·kg-1) and finished with higher maximal velocity and net exercise duration (566 ± 156 vs. 346 ± 156 s, p < 0.001), with no inter-test physiological difference. The 15-15 test also resulted in higher ratings of perceived exertion (16.0 ± 1.2 vs. 12.7 ± 1.6, p < 0.001) and improved perceived physical condition compared with the 20-m shuttle run (+1.4 ± 1.4 vs. +0.2 ± 1.0, p < 0.05). Both tests induced a maximal aerobic power of obese adolescents, but the 15-15 test provided a more progressive speed increment and longer exercise duration. The 15-15 test also elicited a significant improvement of perceived physical condition. In conclusion the 15-15 test can be considered a relevant field test for assessing the aerobic fitness of obese adolescents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...