Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Med Mushrooms ; 25(9): 63-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824406

RESUMEN

The genus Ganoderma has a long history of use in traditional Asiatic medicine due to its different nutritional and medicinal properties. In Mexico, the species G. tuberculosum is used in indigenous communities, for example, the Wixaritari and mestizos of Villa Guerrero Jalisco for the treatment of diseases that may be related to parasitic infections; however, few chemical studies corroborate its traditional medicinal potential. Thereby, the objective of this study was to isolate and identify anti-parasitic activity compounds from a strain of G. tuberculosum native to Mexico. From the fruiting bodies of G. tuberculosum (GVL-21) a hexane extract was obtained which was subjected to guided fractioning to isolate pure compounds. The in vitro anti-parasitic activity of the pure compound (IC50) was assayed against Leishmania amazonensis, Trypanosoma cruzi, Acanthamoeba castellanii Neff, and Naegleria fowleri. Furthermore, the cytotoxicity (CC50) of the isolated compounds was determined against murine macrophages. The guided fractioning produced 5 compounds: ergosterol (1), ergosta-4,6,8(14),22-tetraen-3-one (2), ergosta-7,22-dien-3ß-ol (3), 3,5-dihydroxy-ergosta-7,22-dien-6-one (4), and ganoderic acid DM (5). Compounds 2 and 5 showed the best anti-parasitic activity in an IC50 range of 54.34 ± 8.02 to 12.38 ± 2.72 µM against all the parasites assayed and low cytotoxicity against murine macrophages. The present study showed for the first time the in vitro anti-parasitic activity of compounds 1-5 against L. amazonensis, T. cruzi, A. castellanii Neff, and N. fowleri, corroborating the medicinal potential of Ganoderma and its traditional applications.


Asunto(s)
Antiinfecciosos , Ganoderma , Animales , Ratones , Antiparasitarios , México , Ganoderma/química
2.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37111233

RESUMEN

Leishmaniasis and Chagas disease affect millions of people worldwide. The available treatments against these parasitic diseases are limited and display multiple undesired effects. The brown alga belonging to the genus Gongolaria has been previously reported as a source of compounds with different biological activities. In a recent study from our group, Gongolaria abies-marine was proven to present antiamebic activity. Hence, this brown alga could be a promising source of interesting molecules for the development of new antiprotozoal drugs. In this study, four meroterpenoids were isolated and purified from a dichloromethane/ethyl acetate crude extract through a bioguided fractionation process targeting kinetoplastids. Moreover, the in vitro activity and toxicity were evaluated, and the induction of programmed cell death was checked in the most active and less toxic compounds, namely gongolarone B (2), 6Z-1'-methoxyamentadione (3) and 1'-methoxyamentadione (4). These meroterpenoids triggered mitochondrial malfunction, oxidative stress, chromatin condensation and alterations of the tubulin network. Furthermore, a transmission electron microscopy (TEM) image analysis showed that meroterpenoids (2-4) induced the formation of autophagy vacuoles and ER and Golgi complex disorganization. The obtained results demonstrated that the mechanisms of action at the cellular level of these compounds were able to induce autophagy as well as an apoptosis-like process in the treated parasites.

3.
Biomed Pharmacother ; 158: 114185, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36916403

RESUMEN

Free Living Amoeba (FLA) infections caused by Acanthamoeba genus include chronic nervous system diseases such as Granulomatous Amoebic Encephalitis (GAE), or a severe eye infection known as Acanthamoeba keratitis (AK). Current studies focused on therapy against these diseases are aiming to find novel compounds with amoebicidal activity and low toxicity to human tissues. Brown algae, such as Gongolaria abies-marina (previously known as Cystoseira abies-marina, S.G. Gmelin), presents bioactive molecules of interest, including some with antiprotozoal activity. In this study, six meroterpenoids were isolated and purified from the species Gongolaria abies-marina. Gongolarones A (1), B (2) and C (3) were identified as new compounds. Additionally, cystomexicone B (4), 1'-methoxyamentadione (5) and 6Z-1'-methoxyamentadione (6) were isolated. All compounds exhibited amoebicidal activity against Acanthamoeba castellanii Neff, A. polyphaga and A. griffini strains. Gongolarones A (1) and C (3) showed the lowest IC50 values against the two stages of these amoebae (trophozoite and cyst). Structure-activity relationship revealed that the cyclization by ether formation from C-12 to C-15 of 1, and the isomerization Δ2 t to Δ3 t of 3, increased the antiamoeboid activity of both compounds. Furthermore, gongolarones A (1) and C (3) triggered chromatin condensation, mitochondrial malfunction, oxidative stress, and disorganization of the tubulin-actin cytoskeleton in treated trophozoites. Moreover, transmission electron microscopy (TEM) images analysis revealed that compounds 1 and 3 induced autophagy process and inhibited the encystation process. All those results suggest that both compounds could induce programmed cell death (PCD) in Acanthamoeba.


Asunto(s)
Acanthamoeba castellanii , Amebicidas , Animales , Humanos , Amebicidas/farmacología , Trofozoítos , Citoesqueleto de Actina
4.
Biomed Pharmacother ; 132: 110814, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33086179

RESUMEN

The in vitro activity against Leishmania spp. of five novel designed compounds, phenalenone derivatives, is described in this study. Previous works have shown that some phenalenones present leishmanicidal activity, some of which could induce programmed cell death events in L. amazonensis parasites. In this research, we focused on the determination of the programmed cell death evidence by detecting the characteristic features of the apoptosis-like process, such as phosphatidylserine exposure and mitochondrial membrane potential, among others. The results showed that the new derivatives have comparable or better activity and selectivity than the commonly prescribed anti-leishmanial drug. This result was obtained by inducing stronger mitochondrial depolarization or more intense phosphatidylserine exposure than miltefosine, highlighting compound 8 with moreover 9-times better selectivity index. In addition, the new five molecules activated the apoptosis-like process in the parasite. All the signals observed were indicative of the death process that the parasites were undergoing.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Fenalenos/farmacología , Antiprotozoarios/química , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fenalenos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología
5.
Pathogens ; 9(5)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380785

RESUMEN

Free living, cosmopolitan amoebae from Acanthamoeba genus present a serious risk to human health. As facultative human parasites, these amoebae may cause Acanthamoeba keratitis (AK). Acanthamoeba keratitis is a severe, vision-threatening corneal infection with non-specific symptoms. The number of reported AK cases worldwide has been increasing every year. Moreover, 90% of Acanthamoeba keratitis cases are related to contact lens use. Wearing and storage contact lenses not in accordance with the physicians and manufacturers recommendations are the primary key risk factors of this disease. Amoebae can easily adhere to the contact lens surface and transmit to the corneal epithelium. Preventing amoebae adhesion to the contact lens surface could significantly decrease the number of AK infections. Until now, the effective therapy against AK is still under development. Currently proposed therapies are mainly limited to the chlorhexidine digluconate combined with propamidine isethionate or hexamidine applications, which are insufficient and very toxic to the eye. Due to lack of effective treatment, looking for new potential preventive agents is crucial to decrease the number of Acanthamoeba keratitis infections, especially among contact lens users. Nanoparticles have been already included in several novel therapies against bacteria, viruses, fungi, and protist. However, their anti-amoebic potential has not been fully tested yet. The aim of this study was to assess silver nanoparticles (AgNPs) and platinum nanoparticles (PtNPs) anti-amoebic activity and influence on the amoebae adhesion to the surface of four different groups of contact lenses-classified according to the Food and Drugs Administration (FDA) guidelines. The obtained results show that both tested nanoparticles were effective against Acanthamoeba trophozoites and decreased the amoebae adhesion to the contact lens surface. AgNPs showed better anti-amoebic activity to cytotoxicity dependence and reduced amoebae adhesion in a wider spectrum of the tested contact lenses. Our studies also confirmed that ionization next to hydration of the contact lens material is a crucial parameter influencing the Acanthamoeba adhesion to the contact lens surface. In conclusion, silver nanoparticles might be considered as a novel preventive agent against Acanthamoeba keratitis infection.

6.
Pathogens ; 8(3)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349717

RESUMEN

Acanthamoeba is a free-living amoebae genus which is present worldwide in natural and artificial environments. These amoebae are clinically important as causative agents of diseases in humans and other animals such as a fatal encephalitis or a sight threatening Acanthamoeba keratitis (AK). Lately; studies have focused on the search of novel therapeutic options for AK but also to prevent infections. Furthermore; the evaluation of commercialized products seems to be an option for this case since not clinical assays would be required. Thus; we aimed to test the amoebicidal activity of different mixtures of two commercial ophthalmic solutions: Systane® Ultra; which has already shown anti-Acanthamoeba properties; and Naviblef® Daily Care. In addition, we tested their cytotoxic effect against murine macrophages. At the individual level; Naviblef® Daily Care showed to be the most active product against Acanthamoeba spp. Nevertheless; the combinations of Systane® Ultra and Naviblef® Daily Care; showed an improvement in the activity against trophozoites and cysts of Acanthamoeba castellanii Neff. Moreover; the concentration necessary to generate cytotoxic effect against murine macrophages (J774.1) was much higher than the required for the amoebicidal and cysticidal effect achieved in the most effective mixtures.

7.
Acta Parasitol ; 64(2): 331-335, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30941664

RESUMEN

INTRODUCTION: Saline groundwater desalination has recently emerged as an alternative source of irrigation water in arid and semiarid regions due to the gradual reduction in the quantity and quality of conventional water resources for agricultural use. In Fuerteventura Island (Spain), an extremely arid territory in the European Union, brackish water desalination is one of the few available water sources for agricultural production. Very little research has been conducted on the microbiological quality of this water mainly used for irrigation of vegetable crops. Free-living amoebae (FLA) are widely distributed protozoa in the environment and have been isolated from many environmental sources such as dust, soil and water. Among the pathogenic genera included in this group, Acanthamoeba spp., Naegleria fowleri and Balamuthia mandrillaris have been reported to be causative agents of lethal encephalitis, disseminated infections and keratitis. Particularly, Naegleria fowleri is a pathogenic FLA species which causes primary amoebic meningoencephalitis (PAM). MATERIALS AND METHODS: In the present study, the presence of pathogenic FLA strains on desalinated brackish water samples for irrigation has been evaluated during 7 months. RESULTS: From the analysed samples, only one was positive for Naegleria australiensis. This is the first report of Naegleria spp. in desalinated brackish water for irrigation in Spain.


Asunto(s)
Riego Agrícola , Naegleria/clasificación , Naegleria/aislamiento & purificación , Agua/parasitología , ADN Protozoario/genética , Islas , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...