Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Fungal Genet Biol ; 163: 103743, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152775

RESUMEN

Feline-transmitted sporotrichosis has garnered attention due to the recent high incidence and the lack of efficient control in the epicenter of the epidemic, Rio de Janeiro, Brazil. Sporothrix brasiliensis is the major pathogen involved in feline-to-human sporotrichosis in Brazil and displays more virulent genotypes than the closely related species S. schenckii. Over the last two decades, several reports of antifungal-resistant strains have emerged. Sequencing and comparison analysis of the outbreak strains allowed us to observe that the azole non-wild-type S. brasiliensis strain CFP 1054 had significant chromosomal variations compared to wild-type strains. One of these variants includes a region of 231 Kb containing 75 duplicated genes, which were overrepresented for lipid and isoprenoid metabolism. We also identified an additional strain (CFP 1055) that was resistant to itraconazole and amphotericin B, which had a single nucleotide polymorphism in the tac1 gene. The patients infected with these two strains showed protracted clinical course and sequelae. Even though our sample size is modest, these results suggest the possibility of identifying specific point mutations and large chromosomal duplications potentially associated with antifungal resistance and clinical outcomes of sporotrichosis.


Asunto(s)
Sporothrix , Esporotricosis , Animales , Gatos , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Brasil/epidemiología , Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple , Sporothrix/genética , Esporotricosis/epidemiología , Esporotricosis/microbiología , Farmacorresistencia Fúngica/genética
2.
PLoS One ; 17(1): e0262600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030224

RESUMEN

In patients with severe forms of COVID-19, thromboelastometry has been reported to display a hypercoagulant pattern. However, an algorithm to differentiate severe COVID-19 patients from nonsevere patients and healthy controls based on thromboelastometry parameters has not been developed. Forty-one patients over 18 years of age with positive qRT-PCR for SARS-CoV-2 were classified according to the severity of the disease: nonsevere (NS, n = 20) or severe (S, n = 21). A healthy control (HC, n = 9) group was also examined. Blood samples from all participants were tested by extrinsic (EXTEM), intrinsic (INTEM), non-activated (NATEM) and functional assessment of fibrinogen (FIBTEM) assays of thromboelastometry. The thrombodynamic potential index (TPI) was also calculated. Severe COVID-19 patients exhibited a thromboelastometry profile with clear hypercoagulability, which was significantly different from the NS and HC groups. Nonsevere COVID-19 cases showed a trend to thrombotic pole. The NATEM test suggested that nonsevere and severe COVID-19 patients presented endogenous coagulation activation (reduced clotting time and clot formation time). TPI data were significantly different between the NS and S groups. The maximum clot firmness profile obtained by FIBTEM showed moderate/elevated accuracy to differentiate severe patients from NS and HC. A decision tree algorithm based on the FIBTEM-MCF profile was proposed to differentiate S from HC and NS. Thromboelastometric parameters are a useful tool to differentiate the coagulation profile of nonsevere and severe COVID-19 patients for therapeutic intervention purposes.


Asunto(s)
Coagulación Sanguínea , COVID-19/sangre , Tromboelastografía , Trombofilia/sangre , Adulto , Anciano , Algoritmos , COVID-19/complicaciones , COVID-19/diagnóstico , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Trombofilia/diagnóstico , Trombofilia/etiología , Adulto Joven
3.
JAMA Netw Open ; 5(1): e2147331, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35076699

RESUMEN

Importance: COVID-19 convalescent plasma (CCP) is a potentially beneficial treatment for COVID-19 that requires rigorous testing. Objective: To compile individual patient data from randomized clinical trials of CCP and to monitor the data until completion or until accumulated evidence enables reliable conclusions regarding the clinical outcomes associated with CCP. Data Sources: From May to August 2020, a systematic search was performed for trials of CCP in the literature, clinical trial registry sites, and medRxiv. Domain experts at local, national, and international organizations were consulted regularly. Study Selection: Eligible trials enrolled hospitalized patients with confirmed COVID-19, not receiving mechanical ventilation, and randomized them to CCP or control. The administered CCP was required to have measurable antibodies assessed locally. Data Extraction and Synthesis: A minimal data set was submitted regularly via a secure portal, analyzed using a prespecified bayesian statistical plan, and reviewed frequently by a collective data and safety monitoring board. Main Outcomes and Measures: Prespecified coprimary end points-the World Health Organization (WHO) 11-point ordinal scale analyzed using a proportional odds model and a binary indicator of WHO score of 7 or higher capturing the most severe outcomes including mechanical ventilation through death and analyzed using a logistic model-were assessed clinically at 14 days after randomization. Results: Eight international trials collectively enrolled 2369 participants (1138 randomized to control and 1231 randomized to CCP). A total of 2341 participants (median [IQR] age, 60 [50-72] years; 845 women [35.7%]) had primary outcome data as of April 2021. The median (IQR) of the ordinal WHO scale was 3 (3-6); the cumulative OR was 0.94 (95% credible interval [CrI], 0.74-1.19; posterior probability of OR <1 of 71%). A total of 352 patients (15%) had WHO score greater than or equal to 7; the OR was 0.94 (95% CrI, 0.69-1.30; posterior probability of OR <1 of 65%). Adjusted for baseline covariates, the ORs for mortality were 0.88 at day 14 (95% CrI, 0.61-1.26; posterior probability of OR <1 of 77%) and 0.85 at day 28 (95% CrI, 0.62-1.18; posterior probability of OR <1 of 84%). Heterogeneity of treatment effect sizes was observed across an array of baseline characteristics. Conclusions and Relevance: This meta-analysis found no association of CCP with better clinical outcomes for the typical patient. These findings suggest that real-time individual patient data pooling and meta-analysis during a pandemic are feasible, offering a model for future research and providing a rich data resource.


Asunto(s)
COVID-19/terapia , Hospitalización , Pandemias , Selección de Paciente , Plasma , Anciano , Teorema de Bayes , Femenino , Humanos , Inmunización Pasiva , Masculino , Persona de Mediana Edad , Respiración Artificial , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Organización Mundial de la Salud , Sueroterapia para COVID-19
4.
JAMA Netw Open ; 5(1): e2147375, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35076698

RESUMEN

Importance: Identifying which patients with COVID-19 are likely to benefit from COVID-19 convalescent plasma (CCP) treatment may have a large public health impact. Objective: To develop an index for predicting the expected relative treatment benefit from CCP compared with treatment without CCP for patients hospitalized for COVID-19 using patients' baseline characteristics. Design, Setting, and Participants: This prognostic study used data from the COMPILE study, ie, a meta-analysis of pooled individual patient data from 8 randomized clinical trials (RCTs) evaluating CCP vs control in adults hospitalized for COVID-19 who were not receiving mechanical ventilation at randomization. A combination of baseline characteristics, termed the treatment benefit index (TBI), was developed based on 2287 patients in COMPILE using a proportional odds model, with baseline characteristics selected via cross-validation. The TBI was externally validated on 4 external data sets: the Expanded Access Program (1896 participants), a study conducted under Emergency Use Authorization (210 participants), and 2 RCTs (with 80 and 309 participants). Exposure: Receipt of CCP. Main Outcomes and Measures: World Health Organization (WHO) 11-point ordinal COVID-19 clinical status scale and 2 derivatives of it (ie, WHO score of 7-10, indicating mechanical ventilation to death, and WHO score of 10, indicating death) at day 14 and day 28 after randomization. Day 14 WHO 11-point ordinal scale was used as the primary outcome to develop the TBI. Results: A total of 2287 patients were included in the derivation cohort, with a mean (SD) age of 60.3 (15.2) years and 815 (35.6%) women. The TBI provided a continuous gradation of benefit, and, for clinical utility, it was operationalized into groups of expected large clinical benefit (B1; 629 participants in the derivation cohort [27.5%]), moderate benefit (B2; 953 [41.7%]), and potential harm or no benefit (B3; 705 [30.8%]). Patients with preexisting conditions (diabetes, cardiovascular and pulmonary diseases), with blood type A or AB, and at an early COVID-19 stage (low baseline WHO scores) were expected to benefit most, while those without preexisting conditions and at more advanced stages of COVID-19 could potentially be harmed. In the derivation cohort, odds ratios for worse outcome, where smaller odds ratios indicate larger benefit from CCP, were 0.69 (95% credible interval [CrI], 0.48-1.06) for B1, 0.82 (95% CrI, 0.61-1.11) for B2, and 1.58 (95% CrI, 1.14-2.17) for B3. Testing on 4 external datasets supported the validation of the derived TBIs. Conclusions and Relevance: The findings of this study suggest that the CCP TBI is a simple tool that can quantify the relative benefit from CCP treatment for an individual patient hospitalized with COVID-19 that can be used to guide treatment recommendations. The TBI precision medicine approach could be especially helpful in a pandemic.


Asunto(s)
COVID-19/terapia , Hospitalización , Selección de Paciente , Plasma , Índice Terapéutico , Anciano , Tipificación y Pruebas Cruzadas Sanguíneas , Comorbilidad , Femenino , Humanos , Inmunización Pasiva , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Pandemias , Respiración Artificial , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Organización Mundial de la Salud , Sueroterapia para COVID-19
5.
Artículo en Inglés | MEDLINE | ID: mdl-28559266

RESUMEN

Fungal Candida species are commensals present in the mammalian skin and mucous membranes. Candida spp. are capable of breaching the epithelial barrier of immunocompromised patients with neutrophil and cell-mediated immune dysfunctions and can also disseminate to multiple organs through the bloodstream. Here we examined the action of innate defense regulator 1018 (IDR-1018), a 12-amino-acid-residue peptide derived from bovine bactenecin (Bac2A): IDR-1018 showed weak antifungal and antibiofilm activity against a Candida albicans laboratory strain (ATCC 10231) and a clinical isolate (CI) (MICs of 32 and 64 µg · ml-1, respectively), while 8-fold lower concentrations led to dissolution of the fungal cells from preformed biofilms. IDR-1018 at 128 µg · ml-1 was not hemolytic when tested against murine red blood cells and also has not shown a cytotoxic effect on murine monocyte RAW 264.7 and primary murine macrophage cells at the tested concentrations. IDR-1018 modulated the cytokine profile during challenge of murine bone marrow-derived macrophages with heat-killed C. albicans (HKCA) antigens by increasing monocyte chemoattractant protein 1 (MCP-1) and interleukin-10 (IL-10) levels, while suppressing tumor necrosis factor alpha (TNF-α), IL-1ß, IL-6, and IL-12 levels. Mice treated with IDR-1018 at 10 mg · kg-1 of body weight had an increased survival rate in the candidemia model compared with phosphate-buffered saline (PBS)-treated mice, together with a diminished kidney fungal burden. Thus, IDR-1018 was able to protect against murine experimental candidemia and has the potential as an adjunctive therapy.


Asunto(s)
Antifúngicos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candidemia/tratamiento farmacológico , Candidemia/prevención & control , Factores Inmunológicos/uso terapéutico , Animales , Candida albicans/inmunología , Candida albicans/aislamiento & purificación , Línea Celular , Quimiocina CCL2/inmunología , Modelos Animales de Enfermedad , Interleucina-10/inmunología , Subunidad p35 de la Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
6.
Immunobiology ; 222(4): 604-619, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27887739

RESUMEN

Proinflammatory responses are associated with the severity of cerebral malaria. NO, H2O2, eicosanoid and PPAR-γ are involved in proinflammatory responses, but regulation of these factors is unclear in malaria. This work aimed to compare the expression of eicosanoid-forming-enzymes in cerebral malaria-susceptible CBA and C57BL/6 and -resistant BALB/c mice. Mice were infected with Plasmodium berghei ANKA, and the survival rates and parasitemia curves were assessed. On the sixth day post-infection, cyclooxygenase-2 and 5-lipoxygenase in brain sections were assessed by immunohistochemistry, and, NO, H2O2, lipid bodies, and PPAR-γ expression were assessed in peritoneal macrophages. The C57BL/6 had more severe disease with a lower survival time, higher parasitemia and lower production of plasmodicidal NO and H2O2 molecules than BALB/c. Enhanced COX-2 and 5-LOX expression were observed in brain tissue cells and vessels from C57BL/6 mice, and these mice expressed higher constitutive PPAR-γ levels. There was no translocation of PPAR-γ from cytoplasm to nucleus in macrophages from these mice. CBA mice had enhanced COX-2 expression in brain tissue cells and vessels and also lacked PPAR-γ cytoplasm-to-nucleus translocation. The resistant BALB/c mice presented higher survival time, lower parasitemia and higher NO and H2O2 production on the sixth day post-infection. These mice did not express either COX-2 or 5-LOX in brain tissue cells and vessels. Our data showed that besides the high parasite burden and lack of microbicidal molecules, an imbalance with high COX-2 and 5-LOX eicosanoid expression and a lack of regulatory PPAR-γ cytoplasm-to-nucleus translocation in macrophages were observed in mice that develop cerebral malaria.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Ciclooxigenasa 2/metabolismo , Susceptibilidad a Enfermedades , Gotas Lipídicas/metabolismo , Malaria Cerebral/metabolismo , PPAR gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Araquidonato 5-Lipooxigenasa/genética , Encéfalo/metabolismo , Encéfalo/parasitología , Encéfalo/patología , Ciclooxigenasa 2/genética , Expresión Génica , Macrófagos Peritoneales/metabolismo , Malaria Cerebral/mortalidad , Malaria Cerebral/parasitología , Malaria Cerebral/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos CBA , Microglía/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Plasmodium berghei , Transporte de Proteínas
7.
Front Microbiol ; 7: 1844, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917162

RESUMEN

The incidence of fungal infections has been increasing in the last decades, while the number of available antifungal classes remains the same. The natural and acquired resistance of some fungal species to available therapies, associated with the high toxicity of these drugs on the present scenario and makes an imperative of the search for new, more efficient and less toxic therapeutic choices. Antimicrobial peptides (AMPs) are a potential class of antimicrobial drugs consisting of evolutionarily conserved multifunctional molecules with both microbicidal and immunomodulatory properties being part of the innate immune response of diverse organisms. In this study, we evaluated 11 scorpion-venom derived non-disulfide-bridged peptides against Cryptococcus neoformans and Candida spp., which are important human pathogens. Seven of them, including two novel molecules, showed activity against both genera with minimum inhibitory concentration values ranging from 3.12 to 200 µM and an analogous activity against Candida albicans biofilms. Most of the peptides presented low hemolytic and cytotoxic activity against mammalian cells. Modifications in the primary peptide sequence, as revealed by in silico and circular dichroism analyses of the most promising peptides, underscored the importance of cationicity for their antimicrobial activity as well as the amphipathicity of these molecules and their tendency to form alpha helices. This is the first report of scorpion-derived AMPs against C. neoformans and our results underline the potential of scorpion venom as a source of antimicrobials. Further characterization of their mechanism of action, followed by molecular optimization to decrease their cytotoxicity and increase antimicrobial activity, is needed to fully clarify their real potential as antifungals.

8.
Virulence ; 6(6): 618-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26103530

RESUMEN

Cryptococcus neoformans undergoes phenotypical changes during host infection in order to promote persistence and survival. Studies have demonstrated that such adaptations require alterations in gene transcription networks by distinct mechanisms. Drugs such as the histone deacetylases inhibitors (HDACi) Sodium Butyrate (NaBut) and Trichostatin A (TSA) can alter the chromatin conformation and have been used to modulate epigenetic states in the treatment of diseases such as cancer. In this work, we have studied the effect of NaBut and TSA on the expression of C. neoformans major virulence phenotypes and on the survival rate of an animal model infected with drugs-treated yeasts. Both drugs affected fungal growth at 37°C more intensely than at 30°C; nonetheless, drugs did not affect cell viability at the concentrations we studied. HDACi also provoked the reduction of the fungal capsule expansion. Phospholipases enzyme activity decreased; mating process and melanin synthesis were also affected by both inhibitors. NaBut led to an increase in the population of cells in G2/M. Treated yeast cells, which were washed in order to remove the drugs from the culture medium prior to the inoculation in the Galleria mellonela infection model, did not cause significant difference at the host survival curve when compared to non-treated cells. Overall, NaBut effects on the impairment of C. neoformans main virulence factors were more intense and stable than the TSA effects.


Asunto(s)
Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/fisiología , Inhibidores de Histona Desacetilasas/metabolismo , Animales , Ácido Butírico/metabolismo , División Celular/efectos de los fármacos , Cryptococcus neoformans/crecimiento & desarrollo , Modelos Animales de Enfermedad , Cápsulas Fúngicas/efectos de los fármacos , Cápsulas Fúngicas/metabolismo , Ácidos Hidroxámicos/metabolismo , Lepidópteros , Melaninas/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Fenotipo , Fosfolipasas/análisis , Análisis de Supervivencia , Temperatura , Virulencia/efectos de los fármacos
9.
BMC Genomics ; 15: 943, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25351875

RESUMEN

BACKGROUND: The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS: The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS: Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.


Asunto(s)
Enfermedades de los Gatos/microbiología , Proteínas Fúngicas/genética , Sporothrix/genética , Esporotricosis/transmisión , Factores de Virulencia/genética , Adaptación Biológica , Animales , Enfermedades de los Gatos/transmisión , Gatos , Evolución Molecular , Especiación Genética , Genoma Mitocondrial , Humanos , Filogenia , Sporothrix/clasificación , Sporothrix/patogenicidad , Esporotricosis/microbiología , Esporotricosis/veterinaria
10.
mBio ; 5(1): e00986-13, 2013 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-24381301

RESUMEN

UNLABELLED: Quorum sensing (QS) is a cell density-dependent mechanism of communication between microorganisms, characterized by the release of signaling molecules that affect microbial metabolism and gene expression in a synchronized way. In this study, we investigated cell density-dependent behaviors mediated by conditioned medium (CM) in the pathogenic encapsulated fungus Cryptococcus neoformans. CM produced dose-dependent increases in the growth of planktonic and biofilm cells, glucuronoxylomannan release, and melanin synthesis, important virulence attributes of this organism. Mass spectrometry revealed the presence of pantothenic acid (PA) in our samples, and commercial PA was able to increase growth and melanization, although not to the same extent as CM. Additionally, we found four mutants that were either unable to produce active CM or failed to respond with increased growth in the presence of wild-type CM, providing genetic evidence for the existence of intercellular communication in C. neoformans. C. neoformans CM also increased the growth of Cryptococcus albidus, Candida albicans, and Saccharomyces cerevisiae. Conversely, CM from Cryptococcus albidus, C. albicans, S. cerevisiae, and Sporothrix schenckii increased C. neoformans growth. In summary, we report the existence of a new QS system regulating the growth and virulence factor expression of C. neoformans in vitro and, possibly, also able to regulate growth in other fungi. IMPORTANCE: Quorum sensing is a strategy of communication used by pathogenic microorganisms to coordinate the expression of attributes necessary to cause disease. In this work, we describe a quorum sensing system in Cryptococcus neoformans, a yeast that can cause severe central nervous system infections. Adding conditioned medium--culture medium in which C. neoformans has previously grown--to fresh cultures resulted in faster growth of C. neoformans both as isolated cells and in microbial communities called biofilms. The addition of conditioned medium also increased the secretion of capsule carbohydrates and the formation of melanin pigment, two tools used by this microorganism to thrive in the host. This remarkable example of microbial communication shows that C. neoformans cells can act in unison when expressing attributes necessary to survive in the host, a finding that could point the way to improvements in the treatment of cryptococcosis.


Asunto(s)
Recuento de Células , Cryptococcus neoformans/fisiología , Regulación Fúngica de la Expresión Génica , Percepción de Quorum , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/patogenicidad , Medios de Cultivo Condicionados , Mutación , Ácido Pantoténico/metabolismo , Factores de Virulencia/metabolismo
11.
J Clin Invest ; 120(4): 1355-61, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20335660

RESUMEN

Abs facilitate humoral immunity via the classical mechanisms of opsonization, complement activation, Ab-dependent cellular cytotoxicity, and toxin/viral neutralization. There is also evidence that some Abs mediate direct antimicrobial effects. For example, Ab binding to the polysaccharide capsule of the human pathogenic fungus Cryptococcus neoformans promotes opsonization but also inhibits polysaccharide release and biofilm formation. To investigate whether Ab binding affects C. neoformans directly, we analyzed fungal gene expression after binding of protective and nonprotective mAbs. The 2 IgM Abs and 1 IgG1 Ab tested each induced different changes in gene expression. The protective IgG1 mAb upregulated genes encoding proteins involved in fatty acid synthesis, the protective IgM mAb downregulated genes encoding proteins required for protein translation, and the nonprotective IgM mAb had modest effects on gene expression. Differences in gene expression correlated with mAb binding to different locations of the capsule. Of the 3 Abs tested, the protective IgG1 mAb bound to C. neoformans closest to the cell wall, produced specific differences in the pattern of phosphorylated proteins, caused changes in lipid metabolism, and resulted in increased susceptibility to the antifungal drug amphotericin B. These results suggest what we believe to be a new mode of action for Ab-mediated immunity and raise the possibility that immunoglobulins mediate cross talk between microbes and hosts through their effects on microbial metabolism.


Asunto(s)
Anticuerpos Antifúngicos/inmunología , Cryptococcus neoformans/inmunología , Regulación Fúngica de la Expresión Génica , Anfotericina B/farmacología , Anticuerpos Monoclonales/inmunología , Cápsulas Bacterianas/inmunología , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Metabolismo de los Lípidos
12.
Microbiology (Reading) ; 155(Pt 12): 3860-3867, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19729402

RESUMEN

Recently, several pathogenic fungi were shown to produce extracellular vesicles that contain various components associated with virulence. In the human pathogenic fungus Cryptococcus neoformans, these components included laccase, an enzyme that catalyses melanin synthesis. Spherical melanin granules have been observed in the cell wall of C. neoformans. Given that melanin granules have dimensions that are comparable to those of extracellular vesicles, and that metazoan organisms produce melanin in vesicular structures known as melanosomes, we investigated the role of vesicles in cryptococcal melanization. Extracellular vesicles melanized when incubated with the melanin precursor L-3,4-dihydroxyphenylalanine (L-DOPA). The kinetics of substrate incorporation into cells and vesicles was analysed using radiolabelled L-DOPA. The results indicated that substrate incorporation was different for cells and isolated vesicles. Acid-generated melanin ghosts stained with lipophilic dyes, implying the presence of associated lipid. A model for C. neoformans melanization is proposed that accounts for these observations and provides a mechanism for the assembly of melanin into relatively uniform spherical particles stacked in an orderly arrangement in the cell wall.


Asunto(s)
Cryptococcus neoformans/metabolismo , Melaninas/metabolismo , Pared Celular/metabolismo , Pared Celular/ultraestructura , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/ultraestructura , Humanos , Levodopa/metabolismo , Liposomas , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Modelos Biológicos , Virulencia
13.
BMC Microbiol ; 8: 158, 2008 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-18808717

RESUMEN

BACKGROUND: Paracoccidioides brasiliensis is a dimorphic fungus that causes the most prevalent systemic mycosis in Latin America. The response to heat shock is involved in pathogenesis, as this pathogen switches from mycelium to yeast forms in a temperature dependent fashion that is essential to establish infection. HSP90 is a molecular chaperone that helps in the folding and stabilization of selected polypeptides. HSP90 family members have been shown to present important roles in fungi, especially in the pathogenic species, as an immunodominant antigen and also as a potential antifungal therapeutic target. RESULTS: In this work, we decided to further study the Pbhsp90 gene, its expression and role in cell viability because it plays important roles in fungal physiology and pathogenesis. Thus, we have sequenced a Pbhsp90 cDNA and shown that this gene is present on the genome as a single copy. We have also confirmed its preferential expression in the yeast phase and its overexpression during dimorphic transition and oxidative stress. Treatment of the yeast with the specific HSP90 inhibitors geldanamycin and radicicol inhibited growth at 2 and 10 microM, respectively. CONCLUSION: The data confirm that the Pbhsp90 gene encodes a morphologically regulated and stress-responsive protein whose function is essential to cell viability of this pathogen. This work also enforces the potential of HSP90 as a target for antifungal therapies, since the use of HSP90 inhibitors is lethal to the P. brasiliensis yeast cells in a dose-responsive manner.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Estrés Oxidativo/genética , Paracoccidioides/fisiología , Secuencia de Aminoácidos , Benzoquinonas/farmacología , Supervivencia Celular , Dosificación de Gen , Perfilación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/química , Lactamas Macrocíclicas/farmacología , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Paracoccidioides/efectos de los fármacos , Paracoccidioides/genética , Paracoccidioides/metabolismo , Alineación de Secuencia
14.
BMC Genomics ; 7: 208, 2006 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-16907987

RESUMEN

BACKGROUND: Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. RESULTS: In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation - cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-beta-glucosidase) in mycelium cells; and ags (an alpha-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport - two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells - isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. CONCLUSION: Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Micelio/genética , Paracoccidioides/genética , Levaduras/genética , Transporte Biológico/genética , Northern Blotting/métodos , Proteínas de Transporte de Catión/genética , Pared Celular/genética , Pared Celular/metabolismo , Cisteína/biosíntesis , Citoesqueleto/genética , Citoesqueleto/metabolismo , Etiquetas de Secuencia Expresada , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica/métodos , Iones/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Levaduras/citología , beta-Glucosidasa/genética
15.
FEMS Immunol Med Microbiol ; 45(3): 369-81, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16061364

RESUMEN

Paracoccidioides brasiliensis is a dimorphic and thermo-regulated fungus which is the causative agent of paracoccidioidomycosis, an endemic disease widespread in Latin America. Pathogenicity is assumed to be a consequence of the cellular differentiation process that this fungus undergoes from mycelium to yeast cells during human infection. In an effort to elucidate the molecular mechanisms involved in this process a network of Brazilian laboratories carried out a transcriptome project for both cell types. This review focuses on the data analysis yielding a comprehensive view of the fungal metabolism and the molecular adaptations during dimorphism in P. brasiliensis from analysis of 6022 groups, related to expressed genes, which were generated from both mycelium and yeast phases.


Asunto(s)
Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Paracoccidioides/crecimiento & desarrollo , Paracoccidioidomicosis/microbiología , Etiquetas de Secuencia Expresada , Proteínas Fúngicas/genética , Humanos , Paracoccidioides/genética , Paracoccidioides/metabolismo , Paracoccidioides/patogenicidad , Transcripción Genética
16.
J Biol Chem ; 280(26): 24706-14, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15849188

RESUMEN

Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, a disease that affects 10 million individuals in Latin America. This report depicts the results of the analysis of 6,022 assembled groups from mycelium and yeast phase expressed sequence tags, covering about 80% of the estimated genome of this dimorphic, thermo-regulated fungus. The data provide a comprehensive view of the fungal metabolism, including overexpressed transcripts, stage-specific genes, and also those that are up- or down-regulated as assessed by in silico electronic subtraction and cDNA microarrays. Also, a significant differential expression pattern in mycelium and yeast cells was detected, which was confirmed by Northern blot analysis, providing insights into differential metabolic adaptations. The overall transcriptome analysis provided information about sequences related to the cell cycle, stress response, drug resistance, and signal transduction pathways of the pathogen. Novel P. brasiliensis genes have been identified, probably corresponding to proteins that should be addressed as virulence factor candidates and potential new drug targets.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Micelio/metabolismo , Paracoccidioides/metabolismo , Transcripción Genética , Northern Blotting , ADN Complementario/metabolismo , Regulación hacia Abajo , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Internet , Modelos Biológicos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Paracoccidioides/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...