Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(5): e11361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774135

RESUMEN

Riparian woody plant communities, including shrubs and trees, are essential for maintaining biodiversity, protecting against floods, reducing erosion, and transporting nutrients. However, these habitats are greatly threatened by human activities, particularly agricultural land acquisition, and the introduction of invasive species. This study examined species diversity and interspecific association in riparian woody plant communities along rivers in the Romanian Carpathians. The study focused on communities of Salix purpurea, S. alba, and Hippophaë rhamnoides in mountain regions, with varying sampling efforts at different sites for each species. A total of 174 plant species were found, predominantly herbaceous (77.9%), followed by trees (11.6%) and shrubs (10.5%). While S. alba and S. purpurea communities show high species richness and abundance, S. alba has slightly higher diversity (H' ≈ 2.23, SD = 0.28) than S. purpurea (H' ≈ 1.69, SD = 0.42). Contrarily, significant differences exist between H. rhamnoides and S. alba communities in species richness (p = .007) and Shannon diversity (p = .004). PCA analysis elaborated on distinct distribution patterns of plant associations within habitats S. purpurea community, H. rhamnoides community, and S. alba community. Four invasive species (Oenothera biennis L. and Oxalis stricta L. in S. alba communities, Reynoutria sachalinensis Nakai in both S. purpurea and H. rhamnoides communities, and Erigeron canadensis L. in H. rhamnoides communities) were identified, as requiring conservation efforts. Hemicryptophytes dominate species richness, while microphanerophytes and megaphanerophytes significantly contribute to plant abundance. H. rhamnoides formed Hippophaë rhamnoides dunes (2160) Natura 2000 habitat, while S. alba created galleries within the 92A0 Salix alba and Populus alba habitat. In conclusion, the findings from this study highlight the importance of preserving riparian habitats because their value goes beyond local or regional considerations and extends to the global scale due to their unique characteristics.

2.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659927

RESUMEN

Treatment with genotoxic agents, such as platinum compounds, is still the mainstay therapeutical approach for the majority of cancers. Our understanding of the mechanisms of action of these drugs is however imperfect, and continuously evolving. Recent advances in the field highlighted single stranded DNA (ssDNA) gap accumulation as a potential determinant underlying cisplatin chemosensitivity, at least in some genetic backgrounds, such as BRCA mutations. Cisplatin-induced ssDNA gaps form upon the arrest of replication forks at sites of cisplatin adducts, and restart of DNA synthesis downstream of the lesion through repriming catalyzed by the PRIMPOL enzyme. Here, we show that PRIMPOL overexpression in otherwise wildtype cells results in accumulation of cisplatin-induced ssDNA gaps without sensitizing cells to cisplatin, suggesting that ssDNA gap accumulation does not confer cisplatin sensitivity in BRCA-proficient cells. To understand how ssDNA gaps may cause cellular sensitivity, we employed CRISPR-mediated genome-wide genetic screening to identify factors which enable the cytotoxicity of cisplatin-induced ssDNA gaps. We found that the helicase HELQ specifically suppresses cisplatin sensitivity in PRIMPOL-overexpressing cells, and this is associated with reduced ssDNA accumulation. We moreover identify RAD52 as a mediator of this pathway, and show that RAD52 promotes ssDNA gap accumulation through a BRCA-mediated mechanism. Our work identified the HELQ-RAD52-BRCA axis as a regulator of ssDNA gap processing, shedding light on the mechanisms of cisplatin sensitization in cancer therapy.

3.
Plants (Basel) ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38475503

RESUMEN

Using resilient, self-sustaining plants in urban green spaces enhances environmental and cultural benefits and reduces management costs. We assessed two spontaneous plant species, Linaria vulgaris Mill. and Cichorium intybus L., in four sites from the surrounding urban areas, ranging in altitude from 78 to 1040 m. Protection against UV-B radiation is crucial for plants at higher altitudes, guiding our focus on UV-visible absorption spectra, fluorometric emission spectra, secondary metabolite accumulation, and pigment dynamics in leaves. Our findings revealed a slight increase in UV-absorbing compounds with altitude and species-specific changes in visible spectra. The UV-emission of fluorochromes decreased, while red emission increased with altitude but only in chicory. Polyphenols and flavonoids showed a slight upward trend with altitude. Divergent trends were observed in condensed tannin accumulation, with L. vulgaris decreasing and C. intybus increasing with altitude. Additionally, chicory leaves from higher altitudes (792 and 1040 m) contained significantly lower triterpene concentrations. In L. vulgaris, chlorophyll pigments and carotenoids varied with sites, contrasting with UV absorbance variations. For C. intybus, pigment variation was similar to absorbance changes in the UV and VIS range, except at the highest altitude. These observations provide valuable insights into species-specific strategies for adapting to diverse environmental contexts.

4.
Nucleic Acids Res ; 52(5): 2340-2354, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38180818

RESUMEN

DNA replication stress-induced fork arrest represents a significant threat to genomic integrity. One major mechanism of replication restart involves repriming downstream of the arrested fork by PRIMPOL, leaving behind a single-stranded DNA (ssDNA) gap. Accumulation of nascent strand ssDNA gaps has emerged as a possible determinant of the cellular hypersensitivity to genotoxic agents in certain genetic backgrounds such as BRCA deficiency, but how gaps are converted into cytotoxic structures is still unclear. Here, we investigate the processing of PRIMPOL-dependent ssDNA gaps upon replication stress induced by hydroxyurea and cisplatin. We show that gaps generated in PRIMPOL-overexpressing cells are expanded in the 3'-5' direction by the MRE11 exonuclease, and in the 5'-3' direction by the EXO1 exonuclease. This bidirectional exonucleolytic gap expansion ultimately promotes their conversion into DSBs. We moreover identify the de-ubiquitinating enzyme USP1 as a critical regulator of PRIMPOL-generated ssDNA gaps. USP1 promotes gap accumulation during S-phase, and their expansion by the MRE11 and EXO1 nucleases. This activity of USP1 is linked to its role in de-ubiquitinating PCNA, suggesting that PCNA ubiquitination prevents gap accumulation during replication. Finally, we show that USP1 depletion suppresses DSB formation in PRIMPOL-overexpressing cells, highlighting an unexpected role for USP1 in promoting genomic instability under these conditions.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Proteasas Ubiquitina-Específicas , ADN/genética , Daño del ADN , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Humanos , Proteasas Ubiquitina-Específicas/metabolismo
5.
J Mol Biol ; 436(1): 168275, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714300

RESUMEN

Translesion DNA synthesis (TLS) is a DNA damage tolerance pathway utilized by cells to overcome lesions encountered throughout DNA replication. During replication stress, cancer cells show increased dependency on TLS proteins for cellular survival and chemoresistance. TLS proteins have been described to be involved in various DNA repair pathways. One of the major emerging roles of TLS is single-stranded DNA (ssDNA) gap-filling, primarily after the repriming activity of PrimPol upon encountering a lesion. Conversely, suppression of ssDNA gap accumulation by TLS is considered to represent a mechanism for cancer cells to evade the toxicity of chemotherapeutic agents, specifically in BRCA-deficient cells. Thus, TLS inhibition is emerging as a potential treatment regimen for DNA repair-deficient tumors.


Asunto(s)
ADN Primasa , Reparación del ADN , ADN de Cadena Simple , ADN Polimerasa Dirigida por ADN , Enzimas Multifuncionales , Síntesis Translesional de ADN , Daño del ADN , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Animales , ADN Primasa/metabolismo , Enzimas Multifuncionales/metabolismo
6.
Nat Commun ; 14(1): 6265, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805499

RESUMEN

Accumulation of single stranded DNA (ssDNA) gaps in the nascent strand during DNA replication has been associated with cytotoxicity and hypersensitivity to genotoxic stress, particularly upon inactivation of the BRCA tumor suppressor pathway. However, how ssDNA gaps contribute to genotoxicity is not well understood. Here, we describe a multi-step nucleolytic processing of replication stress-induced ssDNA gaps which converts them into cytotoxic double stranded DNA breaks (DSBs). We show that ssDNA gaps are extended bidirectionally by MRE11 in the 3'-5' direction and by EXO1 in the 5'-3' direction, in a process which is suppressed by the BRCA pathway. Subsequently, the parental strand at the ssDNA gap is cleaved by the MRE11 endonuclease generating a double strand break. We also show that exposure to bisphenol A (BPA) and diethylhexyl phthalate (DEHP), which are widespread environmental contaminants due to their use in plastics manufacturing, causes nascent strand ssDNA gaps during replication. These gaps are processed through the same mechanism described above to generate DSBs. Our work sheds light on both the relevance of ssDNA gaps as major determinants of genomic instability, as well as the mechanism through which they are processed to generate genomic instability and cytotoxicity.


Asunto(s)
Reparación del ADN , Exodesoxirribonucleasas , Humanos , Exodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , ADN/genética , Inestabilidad Genómica , Replicación del ADN , ADN de Cadena Simple/genética , Enzimas Reparadoras del ADN/metabolismo
7.
NAR Cancer ; 5(1): zcad009, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36814782

RESUMEN

ADP-ribosylation is a post-translational modification involved in a variety of processes including DNA damage repair, transcriptional regulation, and cellular proliferation. Depending on the number of ADP moieties transferred to target proteins, ADP-ribosylation can be classified either as mono-ADP-ribosylation (MARylation) or poly-ADP-ribosylation (PARylation). This post-translational modification is catalyzed by enzymes known as ADP-ribosyltransferases (ARTs), which include the poly (ADP-ribose)-polymerase (PARP) superfamily of proteins. Certain members of the PARP family including PARP1 and PARP2 have been extensively studied and assessed as therapeutic targets. However, the other members of the PARP family of protein are not as well studied but have gained attention in recent years given findings suggesting their roles in an increasing number of cellular processes. Among these other members are PARP10 and PARP14, which have gradually emerged as key players in maintenance of genomic stability and carcinogenesis. PARP10 and PARP14 catalyze the transfer of a single ADP moiety to target proteins. Here, we summarize the current knowledge on MARylation in DNA repair and cancer, focusing on PARP10 and PARP14. We highlight the roles of PARP10 and PARP14 in cancer progression and response to chemotherapeutics and briefly discuss currently known PARP10 and PARP14 inhibitors.

8.
Oncotarget ; 13: 1078-1091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187556

RESUMEN

PARP10 is a mono-ADP-ribosyltransferase with multiple cellular functions, including proliferation, apoptosis, metabolism and DNA repair. PARP10 is overexpressed in a significant proportion of tumors, particularly breast and ovarian cancers. Identifying genetic susceptibilities based on PARP10 expression levels is thus potentially relevant for finding new targets for precision oncology. Here, we performed a series of CRISPR genome-wide loss-of-function screens in isogenic control and PARP10-overexpressing or PARP10-knockout cell lines, to identify genetic determinants of PARP10-mediated cellular survival. We found that PARP10-overexpressing cells rely on multiple DNA repair genes for survival, including ATM, the master regulator of the DNA damage checkpoint. Moreover, we show that PARP10 impacts the recruitment of ATM to nascent DNA upon replication stress. Finally, we identify the CDK2-Cyclin E1 complex as essential for proliferation of PARP10-knockout cells. Our work identifies a network of functionally relevant PARP10 synthetic interactions, and reveals a set of factors which can potentially be targeted in personalized cancer therapy.


Asunto(s)
Neoplasias , Poli(ADP-Ribosa) Polimerasas , ADP Ribosa Transferasas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN , Humanos , Neoplasias/genética , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Medicina de Precisión , Proteínas Proto-Oncogénicas/genética
9.
Nat Commun ; 13(1): 5323, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085347

RESUMEN

The inability to protect stalled replication forks from nucleolytic degradation drives genome instability and underlies chemosensitivity in BRCA-deficient tumors. An emerging hallmark of BRCA-deficiency is the inability to suppress replication-associated single-stranded DNA (ssDNA) gaps. Here, we report that lagging strand ssDNA gaps interfere with the ASF1-CAF-1 nucleosome assembly pathway, and drive fork degradation in BRCA-deficient cells. We show that CAF-1 function at replication forks is lost in BRCA-deficient cells, due to defects in its recycling during replication stress. This CAF-1 recycling defect is caused by lagging strand gaps which preclude PCNA unloading, causing sequestration of PCNA-CAF-1 complexes on chromatin. Importantly, correcting PCNA unloading defects in BRCA-deficient cells restores CAF-1-dependent fork stability. We further show that the activation of a HIRA-dependent compensatory histone deposition pathway restores fork stability to BRCA-deficient cells. We thus define lagging strand gap suppression and nucleosome assembly as critical enablers of BRCA-mediated fork stability.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas , Factor 1 de Ensamblaje de la Cromatina/genética , ADN de Cadena Simple/genética , Antígeno Nuclear de Célula en Proliferación , Reciclaje
10.
Nat Commun ; 13(1): 5063, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030235

RESUMEN

Suppression of nascent DNA degradation has emerged as an essential role of the BRCA pathway in genome protection. In BRCA-deficient cells, the MRE11 nuclease is responsible for both resection of reversed replication forks, and accumulation of single stranded DNA gaps behind forks. Here, we show that the mono-ADP-ribosyltransferase PARP14 is a critical co-factor of MRE11. PARP14 is recruited to nascent DNA upon replication stress in BRCA-deficient cells, and through its catalytic activity, mediates the engagement of MRE11. Loss or inhibition of PARP14 suppresses MRE11-mediated fork degradation and gap accumulation, and promotes genome stability and chemoresistance of BRCA-deficient cells. Moreover, we show that the KU complex binds reversed forks and protects them against EXO1-catalyzed degradation. KU recruits the PARP14-MRE11 complex, which initiates partial resection to release KU and allow long-range resection by EXO1. Our work identifies a multistep process of nascent DNA processing at stalled replication forks in BRCA-deficient cells.


Asunto(s)
Replicación del ADN , Exodesoxirribonucleasas , ADN , ADN de Cadena Simple , Proteínas de Unión al ADN , Proteína Homóloga de MRE11
11.
Oncogenesis ; 11(1): 33, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717336

RESUMEN

Maintenance of replication fork stability is essential for genome preservation. Stalled replication forks can be reversed by translocases such as SMARCAL1, and unless protected through the activity of the BRCA pathway, are subsequently subjected to nucleolytic degradation. The ATM and ATR kinases are master regulators of the DNA damage response. ATM activation upon DNA damage is mediated by the acetyltransferase TIP60. Here, we show that the TIP60-ATM pathway promotes replication fork reversal by recruiting SMARCAL1 to stalled forks. This enables fork degradation in BRCA-deficient cells. We also show that this ATM activity is not shared by ATR. Moreover, we performed a series of genome-wide CRISPR knockout genetic screens to identify genetic determinants of the cellular sensitivity to ATM inhibition in wildtype and BRCA2-knockout cells, and validated the top hits from multiple screens. We provide a valuable list of common genes which regulate the response to multiple ATM inhibitors. Importantly, we identify a differential response of wildtype and BRCA2-deficient cells to these inhibitors. In BRCA2-knockout cells, DNA repair genes (including RAD17, MDC1, and USP28) were essential for survival upon ATM inhibitor treatment, which was not the case in wild-type cells. These findings may eventually help guide the way for rational deployment of ATM inhibitors in the clinic.

12.
Sci Rep ; 12(1): 6311, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428820

RESUMEN

Transient receptor potential channel melastatin 2 (TRPM2) is highly expressed in cancer and has an essential function in preserving viability through maintenance of mitochondrial function and antioxidant response. Here, the role of TRPM2 in cell survival was examined in neuroblastoma cells with TRPM2 deletion with CRISPR technology. Viability was significantly decreased in TRPM2 knockout after doxorubicin treatment. RNA sequence analysis and RT-qPCR revealed reduced RNAs encoding master transcription regulators FOXM1 and E2F1/2 and downstream cell cycle targets including Cyclin B1, CDK1, PLK1, and CKS1. CHIP analysis demonstrated decreased FOXM1 binding to their promoters. Western blotting confirmed decreased expression, and increased expression of CDK inhibitor p21, a CKS1 target. In cells with TRPM2 deletion, cell cycle progression to S and G2/M phases was reduced after treatment with doxorubicin. RNA sequencing also identified decreased DNA repair proteins in cells with TRPM2 deletion after doxorubicin treatment, and DNA damage was increased. Wild type TRPM2, but not Ca2+-impermeable mutant E960D, restored live cell number and reconstituted expression of E2F1, FOXM1, and cell cycle/DNA repair proteins. FOXM1 expression alone restored viability. TRPM2 is a potential therapeutic target to reduce tumor proliferation and increase doxorubicin sensitivity through modulation of FOXM1, E2F1, and cell cycle/DNA repair proteins.


Asunto(s)
Factor de Transcripción E2F1 , Proteína Forkhead Box M1 , Neuroblastoma , Canales Catiónicos TRPM , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Doxorrubicina/farmacología , Factor de Transcripción E2F1/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Humanos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patología , Canales Catiónicos TRPM/metabolismo
13.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025765

RESUMEN

Despite being the first homolog of the bacterial RecQ helicase to be identified in humans, the function of RECQL1 remains poorly characterized. Furthermore, unlike other members of the human RECQ family of helicases, mutations in RECQL1 have not been associated with a genetic disease. Here, we identify 2 families with a genome instability disorder that we have named RECON (RECql ONe) syndrome, caused by biallelic mutations in the RECQL gene. The affected individuals had short stature, progeroid facial features, a hypoplastic nose, xeroderma, and skin photosensitivity and were homozygous for the same missense mutation in RECQL1 (p.Ala459Ser), located within its zinc binding domain. Biochemical analysis of the mutant RECQL1 protein revealed that the p.A459S missense mutation compromised its ATPase, helicase, and fork restoration activity, while its capacity to promote single-strand DNA annealing was largely unaffected. At the cellular level, this mutation in RECQL1 gave rise to a defect in the ability to repair DNA damage induced by exposure to topoisomerase poisons and a failure of DNA replication to progress efficiently in the presence of abortive topoisomerase lesions. Taken together, RECQL1 is the fourth member of the RecQ family of helicases to be associated with a human genome instability disorder.


Asunto(s)
Neoplasias de la Mama , Replicación del ADN , Femenino , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Humanos , Mutación , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
14.
Nucleic Acids Res ; 49(22): 12855-12869, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871431

RESUMEN

Understanding chemoresistance mechanisms in BRCA-deficient cells will allow for identification of biomarkers for predicting tumor response to therapy, as well as the design of novel therapeutic approaches targeting this chemoresistance. Here, we show that the protein MED12, a component of the Mediator transcription regulation complex, plays an unexpected role in regulating chemosensitivity in BRCA-deficient cells. We found that loss of MED12 confers resistance to cisplatin and PARP inhibitors in both BRCA1- and BRCA2-deficient cells, which is associated with restoration of both homologous recombination and replication fork stability. Surprisingly, MED12-controlled chemosensitivity does not involve a function of the Mediator complex, but instead reflects a distinct role of MED12 in suppression of the TGFß pathway. Importantly, we show that ectopic activation of the TGFß pathway is enough to overcome the fork protection and DNA repair defects of BRCA-mutant cells, resulting in chemoresistance. Our work identifies the MED12-TGFß module as an important regulator of genomic stability and chemosensitivity in BRCA-deficient cells.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Replicación del ADN/genética , Resistencia a Antineoplásicos/genética , Complejo Mediador/genética , Factor de Crecimiento Transformador beta/genética , Antineoplásicos/farmacología , Proteína BRCA1/deficiencia , Proteína BRCA1/metabolismo , Proteína BRCA2/deficiencia , Proteína BRCA2/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , ADN/química , ADN/genética , ADN/metabolismo , Reparación del ADN , Células HeLa , Humanos , Complejo Mediador/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo
15.
Nat Commun ; 12(1): 6561, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772932

RESUMEN

The tumor suppressor BRCA2 protects stalled forks from degradation to maintain genome stability. However, the molecular mechanism(s) whereby unprotected forks are stabilized remains to be fully characterized. Here, we demonstrate that WRN helicase ensures efficient restart and limits excessive degradation of stalled forks in BRCA2-deficient cancer cells. In vitro, WRN ATPase/helicase catalyzes fork restoration and curtails MRE11 nuclease activity on regressed forks. We show that WRN helicase inhibitor traps WRN on chromatin leading to rapid fork stalling and nucleolytic degradation of unprotected forks by MRE11, resulting in MUS81-dependent double-strand breaks, elevated non-homologous end-joining and chromosomal instability. WRN helicase inhibition reduces viability of BRCA2-deficient cells and potentiates cytotoxicity of a poly (ADP)ribose polymerase (PARP) inhibitor. Furthermore, BRCA2-deficient xenograft tumors in mice exhibited increased DNA damage and growth inhibition when treated with WRN helicase inhibitor. This work provides mechanistic insight into stalled fork stabilization by WRN helicase when BRCA2 is deficient.


Asunto(s)
Proteína BRCA2/genética , Proteína BRCA2/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Neoplasias/genética , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo , Animales , Línea Celular Tumoral , Daño del ADN , Replicación del ADN/fisiología , Femenino , Inestabilidad Genómica , Xenoinjertos , Proteína Homóloga de MRE11/metabolismo , Ratones , Ratones Desnudos , Poli(ADP-Ribosa) Polimerasa-1/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
16.
Oncogene ; 40(30): 4872-4883, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34158578

RESUMEN

Cyclin D1 is an essential regulator of the G1-S cell-cycle transition and is overexpressed in many cancers. Expression of cyclin D1 is under tight cellular regulation that is controlled by many signaling pathways. Here we report that PARP14, a member of the poly(ADP-ribose) polymerase (PARP) family, is a regulator of cyclin D1 expression. Depletion of PARP14 leads to decreased cyclin D1 protein levels. In cells with a functional retinoblastoma (RB) protein pathway, this results in G1 cell-cycle arrest and reduced proliferation. Mechanistically, we found that PARP14 controls cyclin D1 mRNA levels. Using luciferase assays, we show that PARP14 specifically regulates cyclin D1 3'UTR mRNA stability. Finally, we also provide evidence that G1 arrest in PARP14-depleted cells is dependent on an intact p53-p21 pathway. Our work uncovers a new role for PARP14 in promoting cell-cycle progression through both cyclin D1 and the p53 pathway.


Asunto(s)
Ciclo Celular/genética , Ciclina D1/genética , Regulación de la Expresión Génica , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones no Traducidas 3' , Línea Celular , Ciclina D1/metabolismo , Factor de Transcripción E2F1 , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Interferencia de ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteína de Retinoblastoma/metabolismo
17.
Nat Commun ; 11(1): 6118, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257658

RESUMEN

Inhibitors of poly-ADP-ribose polymerase 1 (PARPi) are highly effective in killing cells deficient in homologous recombination (HR); thus, PARPi have been clinically utilized to successfully treat BRCA2-mutant tumors. However, positive response to PARPi is not universal, even among patients with HR-deficiency. Here, we present the results of genome-wide CRISPR knockout and activation screens which reveal genetic determinants of PARPi response in wildtype or BRCA2-knockout cells. Strikingly, we report that depletion of the ubiquitin ligase HUWE1, or the histone acetyltransferase KAT5, top hits from our screens, robustly reverses the PARPi sensitivity caused by BRCA2-deficiency. We identify distinct mechanisms of resistance, in which HUWE1 loss increases RAD51 levels to partially restore HR, whereas KAT5 depletion rewires double strand break repair by promoting 53BP1 binding to double-strand breaks. Our work provides a comprehensive set of putative biomarkers that advance understanding of PARPi response, and identifies novel pathways of PARPi resistance in BRCA2-deficient cells.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/aislamiento & purificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/efectos de los fármacos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Biomarcadores , Daño del ADN , Reparación del ADN , Técnicas de Inactivación de Genes , Células HeLa , Recombinación Homóloga/efectos de los fármacos , Humanos , Lisina Acetiltransferasa 5/metabolismo , Proteínas Mad2/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
PLoS Genet ; 16(11): e1009176, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137164

RESUMEN

The ataxia telangiectasia and Rad3-related (ATR) protein kinase is a key regulator of the cellular response to DNA damage. Due to increased amount of replication stress, cancer cells heavily rely on ATR to complete DNA replication and cell cycle progression. Thus, ATR inhibition is an emerging target in cancer therapy, with multiple ATR inhibitors currently undergoing clinical trials. Here, we describe dual genome-wide CRISPR knockout and CRISPR activation screens employed to comprehensively identify genes that regulate the cellular resistance to ATR inhibitors. Specifically, we investigated two different ATR inhibitors, namely VE822 and AZD6738, in both HeLa and MCF10A cells. We identified and validated multiple genes that alter the resistance to ATR inhibitors. Importantly, we show that the mechanisms of resistance employed by these genes are varied, and include restoring DNA replication fork progression, and prevention of ATR inhibitor-induced apoptosis. In particular, we describe a role for MED12-mediated inhibition of the TGFß signaling pathway in regulating replication fork stability and cellular survival upon ATR inhibition. Our dual genome-wide screen findings pave the way for personalized medicine by identifying potential biomarkers for ATR inhibitor resistance.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Biomarcadores de Tumor/metabolismo , Sistemas CRISPR-Cas/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Indoles , Complejo Mediador/genética , Complejo Mediador/metabolismo , Morfolinas , Neoplasias/genética , Neoplasias/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sulfonamidas , Sulfóxidos/farmacología , Sulfóxidos/uso terapéutico , Factor de Crecimiento Transformador beta/metabolismo
19.
Nucleic Acids Res ; 48(16): 9161-9180, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32797166

RESUMEN

FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.


Asunto(s)
Proteína BRCA1/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Inestabilidad Genómica/genética , Chaperonas de Histonas/genética , ARN Helicasas/genética , Recombinasa Rad51/genética , Inestabilidad Cromosómica/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/deficiencia , Técnicas de Inactivación de Genes , Células HeLa , Chaperonas de Histonas/deficiencia , Humanos , Mitomicina/farmacología , Reparación del ADN por Recombinación/genética
20.
Nucleic Acids Res ; 48(13): 7252-7264, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32542389

RESUMEN

The DNA damage response is essential to maintain genomic stability, suppress replication stress, and protect against carcinogenesis. The ATR-CHK1 pathway is an essential component of this response, which regulates cell cycle progression in the face of replication stress. PARP14 is an ADP-ribosyltransferase with multiple roles in transcription, signaling, and DNA repair. To understand the biological functions of PARP14, we catalogued the genetic components that impact cellular viability upon loss of PARP14 by performing an unbiased, comprehensive, genome-wide CRISPR knockout genetic screen in PARP14-deficient cells. We uncovered the ATR-CHK1 pathway as essential for viability of PARP14-deficient cells, and identified regulation of DNA replication dynamics as an important mechanistic contributor to the synthetic lethality observed. Our work shows that PARP14 is an important modulator of the response to ATR-CHK1 pathway inhibitors.


Asunto(s)
Replicación del ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Mutaciones Letales Sintéticas , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...