Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38775074

RESUMEN

Background: The control and prevention of rodent-borne diseases are mainly based on our knowledge of ecology and the infectious status of their reservoir hosts. This study aimed to evaluate the prevalence of Francisella tularensis, Yersinia pestis, and arenavirus infections in small mammals and to assess the potential of disease occurrence in East Azerbaijan, northwest of Iran, in 2017 and 2018. Methods: Spleen and lung samples were obtained from all trapped small mammals. The real-time quantitative PCR (qPCR) method was used to detect nucleic acid sequences of F. tularensis, Y. pestis, and arenaviruses. Serum samples were tested for antibodies indicating the host response to F. tularensis and Y. pestis infections using the standard tube agglutination test and enzyme-linked immunosorbent assay (ELISA), respectively. Results: A total of 205 rodents, four Eulipotyphla, and one carnivore were captured. The most common rodent species captured (123 of 205 rodents, 60%) belonged to the genus Meriones (mainly Persian jird, Meriones persicus). In total, 317 fleas were removed from trapped animals. Flea species belonged to Xenopsylla buxtoni, Xenopsylla nuttalli, Stenoponia tripectinata, Paraceras melis, Ctenophthalmus rettigi smiti, Rhadinopsylla bivirgis, Paradoxopsyllus grenieri, and Nosopsyllus iranus. Using the qPCR tests, five spleen samples from M. persicus were positive for F. tularensis. The qPCR tests were negative for the detection of Y. pestis and arenaviruses. Finally, all serum samples tested were negative for antibodies against Y. pestis and F. tularensis. Conclusions: F. tularensis was the only zoonotic agent detected in rodents captured in East Azerbaijan. However, the diversity of trapped rodents and fleas provides the potential for the spread of various rodent-borne viral and bacterial diseases in the studied areas.

2.
Zootaxa ; 5258(1): 99-112, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37044608

RESUMEN

Species of Hylarana Tschudi, 1838 are among the most common amphibian species in the Oriental region. Their poorly known geographical distribution impacts species delimitation and conservation actions. We compiled geographical data from literature, online databases and museum collections for the four currently recognized species, Hylarana erythraea, H. taipehensis, H. tytleri and H. macrodactyla. We obtained 1014 occurrence records and allocated a quality rate to each of these points: A-species identification confirmed by ancillary data; B-species identification unconfirmed; and C-conflict between species name, geographic origin and morphological characters; resulted in exclusion of the latter in final analyses. Based on these different datasets we built species occurrence maps for each of the four species. These maps were compared to already available distribution maps, introducing a more precise distribution for the four species but with persistence of data gaps within less prospected areas. We then built Species Distribution Models (SDMs) based on climatic data. Discrepancies between observed distribution ranges and areas with suitable climatic niches are discussed in a taxonomical context. Hylarana species, although taxonomically still not fully resolved and occupying similar habitats, exhibit differences in distribution pattern. Models also fill data gaps, introducing relevant suitable climatic niches within close range of species' distribution areas. Differences were observed between A and B-quality data models, with high suitable habitats being less present in most cases for B-quality. Our study shows the importance of merging A and B-quality data, represented by A+B dataset, thus creating more accurate models, but also underlines the necessity to have access to correct data to limit bias.


Asunto(s)
Ecosistema , Ranidae , Animales , Geografía
3.
Mol Phylogenet Evol ; 180: 107708, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657626

RESUMEN

Crocidura (Eulipotyphla, Soricidae) is the most species-rich genus among mammals, with high cryptic diversity and complicated taxonomy. The hirta-flavescens group of Crocidura represents the most abundant and widespread shrews in savannahs of eastern and southern Africa, making them a suitable phylogeographical model for assessing the role of paleoclimatic changes on current biodiversity in open African habitats. We present the first comprehensive study on the phylogeography, evolutionary history, geographical distribution, systematics, and taxonomy of the group, using the integration of mitochondrial, genome-wide (ddRAD sequencing), morphological and morphometrical data collected from specimens over most of the known geographic distribution. Our genomic data confirmed the monophyly of this group and its sister relationship with the olivieri group of Crocidura. There is a substantial genetic variation within the hirta-flavescens group, with three highly supported clades showing parapatric distribution and which can be distinguished morphologically: C. hirta, distributed in both the Zambezian and Somali-Masai bioregions, C. flavescens, known from South Africa and south-western Zambia, and C. cf. flavescens, which is known to occur only in central and western Tanzania. Morphometric data revealed relatively minor differences between C. hirta and C. cf. flavescens, but they differ in the colouration of the pelage. Diversification of the hirta-flavescens group has most likely happened during phases of grassland expansion and contraction during Plio-Pleistocene climatic cycles. Eastern African Rift system, rivers, and the distinctiveness of Zambezian and Somali-Masai bioregions seem to have also shaped the pattern of their diversity, which is very similar to sympatric rodent species living in open habitats. Finally, we review the group's taxonomy and propose to revalidate C. bloyeti, currently a synonym of C. hirta, including the specimens treated as C. cf. flavescens.


Asunto(s)
Evolución Biológica , Musarañas , Animales , Filogenia , Musarañas/genética , Filogeografía , África Austral
4.
J Anat ; 242(2): 257-276, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36156797

RESUMEN

The forelimb is involved in many behaviours including locomotion. Notably, the humero-ulnar articulation, implicated in the elbow joint, is of particular importance for both mobility and stability. Functional constraints, induced in part by environmental plasticity, are thought to drive an important part of the bone shape as bone directly responds and remodels in response to both muscle and external forces. In this context, the study of subterranean moles is of particular interest. These moles occupy a hard and heavy medium in comparison with air or water, requiring a powerful body structure to shear and shift the soil. Their general morphology is therefore adapted to digging and to their subterranean lifestyle. The various morpho-functional patterns, which drive diverse abilities according to the environment, are likely targets of natural selection and it is, therefore, useful to understand the relationships between the bone shape and their function. Here, we quantify, through 3D geometric morphometric methods, the interspecific variability in the morphology of the ulna and humerus of three Talpa species, including the new species Talpa aquitania, to infer their potential consequence in species digging performance. We also quantify shape covariation and morphological integration between the humerus and the ulna to test whether these bones evolve as a uniform functional unit or as more or less independent modules. Our results show that interspecific anatomical differences in the humerus and ulna exist among the three species. Shape changes are mostly located at the level of joints and muscle attachments. As the species tend to live in allopatry and the fossorial lifestyle induces strong ecological constraints, interspecific variations could be explained by the properties of the environment in which they live, such as the compactness of the soil. Our results also show that the humerus and ulna are highly integrated. The covariation between the humerus and ulna in moles is dominated by variation in the attachment areas and particularly of the attachment areas of shoulder muscles concerning the humerus, which affect the mechanical force deployed during locomotion and digging. This study also highlights that in the new species, T. aquitania, variations in anatomical structure (general shape and joints) exist and are related to the locality of collect of the individuals.


Asunto(s)
Topos , Humanos , Animales , Topos/anatomía & histología , Topos/fisiología , Húmero/anatomía & histología , Cúbito , Extremidad Superior , Suelo
5.
Sci Rep ; 12(1): 10531, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732784

RESUMEN

Untangling the factors of morphological evolution has long held a central role in the study of evolutionary biology. Extant speciose clades that have only recently diverged are ideal study subjects, as they allow the examination of rapid morphological variation in a phylogenetic context, providing insights into a clade's evolution. Here, we focus on skull morphological variability in a widely distributed shrew species complex, the Crocidura poensis species complex. The relative effects of taxonomy, size, geography, climate and habitat on skull form were tested, as well as the presence of a phylogenetic signal. Taxonomy was the best predictor of skull size and shape, but surprisingly both size and shape exhibited no significant phylogenetic signal. This paper describes one of the few cases within a mammal clade where morphological evolution does not match the phylogeny. The second strongest predictor for shape variation was size, emphasizing that allometry can represent an easily accessed source of morphological variability within complexes of cryptic species. Taking into account species relatedness, habitat preferences, geographical distribution and differences in skull form, our results lean in favor of a parapatric speciation model within this complex of species, where divergence occurred along an ecological gradient, rather than a geographic barrier.


Asunto(s)
Ecosistema , Musarañas , Animales , Clima , Humanos , Filogenia , Cráneo/anatomía & histología
6.
Mol Phylogenet Evol ; 163: 107263, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273505

RESUMEN

The tribe Praomyini is a diversified group including 64 species and eight extant rodent genera. They live in a broad spectrum of habitats across whole sub-Saharan Africa. Members of this tribe are often very abundant, they have a key ecological role in ecosystems, they are hosts of many potentially pathogenic microorganisms and comprise numerous agricultural pests. Although this tribe is well supported by both molecular and morphological data, its intergeneric relationships and the species contents of several genera are not yet fully resolved. Recent molecular data suggest that at least three genera in current sense are paraphyletic. However, in these studies the species sampling was sparse and the resolution of relationships among genera was poor, probably due to a fast radiation of the tribe dated to the Miocene and insufficient amount of genetic data. Here we used genomic scale data (395 nuclear loci = 610,965 bp long alignment and mitogenomes = 14,745 bp) and produced the first fully resolved species tree containing most major lineages of the Praomyini tribe (i.e. all but one currently delimited genera and major intrageneric clades). Results of a fossil-based divergence dating analysis suggest that the radiation started during the Messinian stage (ca. 7 Ma) and was likely linked to a fragmentation of the pan-African Miocene forest. Some lineages remained in the rain forests, while many others adapted to a broad spectrum of new open lowland and montane habitats that appeared at the beginning of Pliocene. Our analyses clearly confirmed the presence of three polyphyletic genera (Praomys, Myomyscus and Mastomys). We review current knowledge of these three genera and suggest corresponding taxonomic changes. To keep genera monophyletic, we propose taxonomic re-arrangements and delimit four new genera. Furthermore, we discovered a new highly divergent genetic lineage of Praomyini in southwestern Ethiopia, which is described as a new species and genus.


Asunto(s)
Ecosistema , Murinae , Animales , Evolución Biológica , Etiopía , Filogenia
7.
Syst Biol ; 70(6): 1077-1089, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33693838

RESUMEN

The family Pteropodidae (Old World fruit bats) comprises $>$200 species distributed across the Old World tropics and subtropics. Most pteropodids feed on fruit, suggesting an early origin of frugivory, although several lineages have shifted to nectar-based diets. Pteropodids are of exceptional conservation concern with $>$50% of species considered threatened, yet the systematics of this group has long been debated, with uncertainty surrounding early splits attributed to an ancient rapid diversification. Resolving the relationships among the main pteropodid lineages is essential if we are to fully understand their evolutionary distinctiveness, and the extent to which these bats have transitioned to nectar-feeding. Here we generated orthologous sequences for $>$1400 nuclear protein-coding genes (2.8 million base pairs) across 114 species from 43 genera of Old World fruit bats (57% and 96% of extant species- and genus-level diversity, respectively), and combined phylogenomic inference with filtering by information content to resolve systematic relationships among the major lineages. Concatenation and coalescent-based methods recovered three distinct backbone topologies that were not able to be reconciled by filtering via phylogenetic information content. Concordance analysis and gene genealogy interrogation show that one topology is consistently the best supported, and that observed phylogenetic conflicts arise from both gene tree error and deep incomplete lineage sorting. In addition to resolving long-standing inconsistencies in the reported relationships among major lineages, we show that Old World fruit bats have likely undergone at least seven independent dietary transitions from frugivory to nectarivory. Finally, we use this phylogeny to identify and describe one new genus. [Chiroptera; coalescence; concordance; incomplete lineage sorting; nectar feeder; species tree; target enrichment.].


Asunto(s)
Quirópteros , Animales , Evolución Biológica , Quirópteros/genética , Evolución Molecular , Filogenia
8.
Mol Phylogenet Evol ; 157: 107069, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421615

RESUMEN

The tribe Arvicanthini (Muridae: Murinae) is a highly diversified group of rodents (ca. 100 species) and with 18 African genera (plus one Asiatic) represents probably the most successful adaptive radiation of extant mammals in Africa. They colonized a broad spectrum of habitats (from rainforests to semi-deserts) in whole sub-Saharan Africa and their members often belong to most abundant parts of mammal communities. Despite intensive efforts, the phylogenetic relationships among major lineages (i.e. genera) remained obscured, which was likely caused by the intensive radiation of the group, dated to the Late Miocene. Here we used genomic scale data (377 nuclear loci; 581,030 bp) and produced the first fully resolved species tree containing all currently delimited genera of the tribe. Mitogenomes were also extracted, and while the results were largely congruent, there was less resolution at basal nodes of the mitochondrial phylogeny. Results of a fossil-based divergence dating analysis suggest that the African radiation started early after the colonization of Africa by a single arvicanthine ancestor from Asia during the Messinian stage (ca. 7 Ma), and was likely linked with a fragmentation of the pan-African Miocene forest. Some lineages remained in the rain forest, while many others successfully colonized broad spectrum of new open habitats (e.g. savannas, wetlands or montane moorlands) that appeared at the beginning of Pliocene. One lineage even evolved partially arboricolous life style in savanna woodlands, which allowed them to re-colonize equatorial forests. We also discuss delimitation of genera in Arvicanthini and propose corresponding taxonomic changes.


Asunto(s)
Núcleo Celular/genética , Genoma Mitocondrial , Murinae/clasificación , Murinae/genética , África del Sur del Sahara , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Bases de Datos como Asunto , Sitios Genéticos , Filogenia , Especificidad de la Especie
9.
Mitochondrion ; 57: 182-191, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33412336

RESUMEN

Organisms living in high altitude must adapt to environmental conditions with hypoxia and low temperature, e.g. by changes in the structure and function of proteins associated with oxidative phosphorylation in mitochondria. Here we analysed the signs of adaptive evolution in 27 mitogenomes of endemic Ethiopian rats (Stenocephalemys), where individual species adapted to different elevation. Significant signals of positive selection were detected in 10 of the 13 mitochondrial protein-coding genes, with a majority of functional substitutions in the NADH dehydrogenase complex. Higher frequency of positively selected sites was found in phylogenetic lineages corresponding to Afroalpine specialists.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/genética , Murinae/genética , Análisis de Secuencia de ADN/métodos , Animales , Evolución Molecular , Introgresión Genética , Proteínas Mitocondriales/química , Modelos Moleculares , Murinae/clasificación , Fosforilación Oxidativa , Filogenia , Selección Genética
10.
Biol Rev Camb Philos Soc ; 96(1): 16-51, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32924323

RESUMEN

Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Fósiles , Filogenia , Plantas/genética
11.
Mol Phylogenet Evol ; 155: 107007, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33160039

RESUMEN

Murine rodents are one of the most evolutionary successful groups of extant mammals. They are also important for human as vectors and reservoirs of zoonoses and agricultural pests. Unfortunately, their fast and relatively recent diversification impedes our understanding of phylogenetic relationships and species limits of many murine taxa, including those with very conspicuous phenotype that has been frequently used for taxonomic purposes. One of such groups are the striped grass mice (genus Lemniscomys), distributed across sub-Saharan Africa in 11 currently recognized species. These are traditionally classified into three morphological groups according to different pelage colouration on the back: (a) L. barbarus group (three species) with several continuous pale longitudinal stripes; (b) L. striatus group (four species) with pale stripes diffused into short lines or dots; and (c) L. griselda group (four species) with a single mid-dorsal black stripe. Here we reconstructed the most comprehensive molecular phylogeny of the genus Lemniscomys to date, using the largest currently available multi-locus genetic dataset of all but two species. The results show four main lineages (=species complexes) with the distribution corresponding to the major biogeographical regions of Africa. Surprisingly, the four phylogenetic lineages are only in partial agreement with the morphological classification, suggesting that the single-stripe and/or multi-striped phenotypes evolved independently in multiple lineages. Divergence dating showed the split of Lemniscomys and Arvicanthis genera at the beginning of Pleistocene; most of subsequent speciation processes within Lemniscomys were affected by Pleistocene climate oscillations, with predominantly allopatric diversification in fragmented savanna biome. We propose taxonomic suggestions and directions for future research of this striking group of African rodents.


Asunto(s)
Sitios Genéticos , Filogenia , Sigmodontinae/anatomía & histología , Sigmodontinae/clasificación , África del Sur del Sahara , Animales , Teorema de Bayes , Calibración , Clima , ADN Mitocondrial/genética , Variación Genética , Geografía , Haplotipos/genética , Mitocondrias/genética , Especificidad de la Especie , Factores de Tiempo
12.
Mol Phylogenet Evol ; 144: 106703, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816395

RESUMEN

Wood mice of the genus Hylomyscus, are small-sized rodents widely distributed in lowland and montane rainforests in tropical Africa, where they can be locally abundant. Recent morphological and molecular studies have increased the number of recognized species from 8 to 18 during the last 15 years. We used complete mitochondrial genomes and five nuclear genes to infer the number of candidate species within this genus and depict its evolutionary history. In terms of gene sampling and geographical and taxonomic coverage, this is the most comprehensive review of the genus Hylomyscus to date. The six species groups (aeta, alleni, anselli, baeri, denniae and parvus) defined on morphological grounds are monophyletic. Species delimitation analyses highlight undescribed diversity within this genus: perhaps up to 10 taxa need description or elevation from synonymy, pending review of type specimens. Our divergence dating and biogeographical analyses show that diversification of the genus occurred after the end of the Miocene and is closely linked to the history of the African forest. The formation of the Rift Valley combined with the declining global temperatures during the Late Miocene caused the fragmentation of the forests and explains the first split between the denniae group and remaining lineages. Subsequently, periods of increased climatic instability during Plio-Pleistocene probably resulted in elevated diversification in both lowland and montane forest taxa.


Asunto(s)
Evolución Biológica , Variación Genética , Genoma Mitocondrial , Murinae/clasificación , Murinae/genética , África , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Ecosistema , Bosques , Ratones , Filogenia , Análisis de Secuencia de ADN , Clima Tropical
13.
C R Biol ; 342(3-4): 108-117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31056422

RESUMEN

The taxonomy of African shrew species is still unresolved due to their conserved morphology. This also affects knowledge concerning their geographic distribution. In Nigeria, using mitochondrial Cytochrome b gene sequences, we carried out a survey for shrews from the genus Crocidura across various ecological zones to determine taxa that are present and also to assess their phylogeographic structure. Our analyses include 183 specimens collected with Sherman traps from 19 localities around the country. We detected six taxa: Crocidura olivieri lineages II, III and IV, C. hildegardeae, C. jouvenetae, and C. foxi. Among these, C. hildegardeae and C. jouvenetae are reported in Nigeria for the first time. Phylogenetic comparison of our genetic sequences to those generated from other parts of Africa demonstrate that all species in our study, as currently defined, are in need of taxonomic revision. Geographically, Nigeria seems to represent the easternmost boundary for C. olivieri lineage II and C. jouvenetae, and the western distribution limit of C. olivieri lineage IV and C. hildegardeae. The Niger River appears to be the most significant topographical barrier restricting these taxa. This information is vital to preserving the diversity but also managing the epidemiological potential of these small mammals.


Asunto(s)
Citocromos b/genética , Genes Mitocondriales , Filogenia , Musarañas/clasificación , Animales , Ecología , Nigeria , Filogeografía
14.
Heredity (Edinb) ; 122(2): 150-171, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29795180

RESUMEN

North Africa is now recognized as a major area for the emergence and dispersal of anatomically modern humans from at least 315 kya. The Mediterranean Basin is thus particularly suited to study the role of climate versus human-mediated changes on the evolutionary history of species. The Algerian mouse (Mus spretus Lataste) is an endemic species from this basin, with its distribution restricted to North Africa (from Libya to Morocco), Iberian Peninsula and South of France. A rich paleontological record of M. spretus exists in North Africa, suggesting hypotheses concerning colonization pathways, and the demographic and morphologic history of this species. Here we combined genetic (3 mitochondrial DNA loci and 18 microsatellites) and climatic niche modeling data to infer the evolutionary history of the Algerian mouse. We collected 646 new individuals in 51 localities. Our results are consistent with an anthropogenic translocation of the Algerian mouse from North Africa to the Iberian Peninsula via Neolithic navigators, probably from the Tingitane Peninsula. Once arrived in Spain, suitable climatic conditions would then have favored the dispersion of the Algerian mice to France. The morphological differentiation observed between Spanish, French and North African populations could be explained by a founder effect and possibly local adaptation. This article helps to better understand the role of climate versus human-mediated changes on the evolutionary history of mammal species in the Mediterranean Basin.


Asunto(s)
Migración Animal , Ratones/crecimiento & desarrollo , África del Norte , Animales , Clima , ADN Mitocondrial/genética , Europa (Continente) , Ratones/clasificación , Ratones/genética , Ratones/fisiología , Repeticiones de Microsatélite , Filogenia , España
15.
C R Biol ; 341(7-8): 398-409, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30153972

RESUMEN

Even though Gerbillinae rodents represent an important part of the mammalian fauna in North Africa, many gaps remain in our understanding of the distribution, ecology, evolution, and systematics of some lesser known species in this family. We present in this study the most recent findings on two of these species. The first species, Gerbillus simoni Lataste, 1881, is a short-tailed, small gerbil, endemic to North Africa. In Morocco, it is present only in a small area in the northeast, where it has not been caught since 1970. In 2014, we captured a small gerbil in this region that was identified as G. simoni based on morphology and molecular data (cytochrome b gene sequencing). This study represents the first genetic characterization of G. simoni in Morocco and the first one outside Tunisia. Populations from Morocco and Tunisia (mainland and Kerkennah Islands) show very little genetic differentiation. The second species, Gerbillus henleyi de Winton, 1903, is a long-tailed small gerbil that lives in the Sahel and North Africa with an extension to the Middle East. In Morocco, this species was only known in the southwest. Between 2014 and 2015, we have captured four gerbils in the northeast of the country, which were confirmed genetically and morphologically as belonging to this species. This represents an extension of its known distribution of about 370km to the northeast of the country. These new Moroccan specimens form a distinct lineage. High genetic diversity is observed throughout the geographic range of G. henleyi, suggesting the existence of several cryptic species.


Asunto(s)
Citocromos b/genética , Variación Genética , Gerbillinae/clasificación , Filogeografía , Animales , Ecología , Gerbillinae/genética , Marruecos , Túnez
16.
Ecol Evol ; 8(24): 12803-12820, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30619584

RESUMEN

The Gambian epauletted fruit bat (Epomophorus gambianus) is an abundant species that roosts in both urban and rural settings. The possible role of E. gambianus as a reservoir host of zoonotic diseases underlines the need to better understand the species movement patterns. So far, neither observational nor phylogenetic studies have identified the dispersal range or behavior of this species. Comparative analyses of mitochondrial and nuclear markers from 20 localities across the known distribution of E. gambianus showed population panmixia, except for the populations in Ethiopia and southern Ghana (Accra and Ve-Golokwati). The Ethiopian population may be ancestral and is highly divergent to the species across the rest of its range, possibly reflecting isolation of an ancient colonization along an east-west axis. Mitochondrial haplotypes in the Accra population display a strong signature of a past bottleneck event; evidence of either an ancient or recent bottleneck using microsatellite data, however, was not detected. Demographic analyses identified population expansion in most of the colonies, except in the female line of descent in the Accra population. The molecular analyses of the colonies from Ethiopia and southern Ghana show gender dispersal bias, with the mitochondrial DNA fixation values over ten times those of the nuclear markers. These findings indicate free mixing of the species across great distances, which should inform future epidemiological studies.

17.
BMC Evol Biol ; 15: 71, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25900417

RESUMEN

BACKGROUND: This study aims to reconstruct the evolutionary history of African shrews referred to the Crocidura olivieri complex. We tested the respective role of forest retraction/expansion during the Pleistocene, rivers (allopatric models), ecological gradients (parapatric model) and anthropogenic factors in explaining the distribution and diversification within this species complex. We sequenced three mitochondrial and four nuclear markers from 565 specimens encompassing the known distribution of the complex, i.e. from Morocco to Egypt and south to Mozambique. We used Bayesian phylogenetic inference, genetic structure analyses and divergence time estimates to assess the phylogenetic relationships and evolutionary history of these animals. RESULTS: The C. olivieri complex (currently composed of C. olivieri, C. fulvastra, C. viaria and C. goliath) can be segregated into eight principal geographical clades, most exhibiting parapatric distributions. A decrease in genetic diversity was observed between central and western African clades and a marked signal of population expansion was detected for a broadly distributed clade occurring across central and eastern Africa and portions of Egypt (clade IV). The main cladogenesis events occurred within the complex between 1.37 and 0.48 Ma. Crocidura olivieri sensu stricto appears polyphyletic and C. viaria and C. fulvastra were not found to be monophyletic. CONCLUSIONS: Climatic oscillations over the Pleistocene probably played a major role in shaping the genetic diversity within this species complex. Different factors can explain their diversification, including Pleistocene forest refuges, riverine barriers and differentiation along environmental gradients. The earliest postulated members of the complex originated in central/eastern Africa and the first radiations took place in rain forests of the Congo Basin. A dramatic shift in the ecological requirements in early members of the complex, in association with changing environments, took place sometime after 1.13 Ma. Some lineages then colonized a substantial portion of the African continent, including a variety of savannah and forest habitats. The low genetic divergence of certain populations, some in isolated localities, can be explained by their synanthropic habits. This study underlines the need to revise the taxonomy of the C. olivieri complex.


Asunto(s)
Filogeografía , Musarañas/genética , África , Animales , Teorema de Bayes , Evolución Biológica , Ecología , Ecosistema , Bosques , Flujo Genético , Especiación Genética , Variación Genética , Filogenia , Musarañas/clasificación
18.
Bull Acad Vet Fr ; 167(3)2014.
Artículo en Inglés | MEDLINE | ID: mdl-25530620

RESUMEN

Nova hantavirus (NVAV) was first identified in a single European mole (Talpa europaea), captured in Hungary. Analysis of lung tissues from 94 moles captured in France revealed NVAV in 50%. Based on the genetic diversity of the cytochrome b mtDNA, moles collected in Poitiers and Bordeaux were more closely related to the Iberian mole (T. occidentalis), a species previously assumed to be restricted to the Iberian Peninsula. Several hypotheses are discussed to explain these observations: 1) presence of hitherto unnoticed T. occidentalis in southwestern France; 2) existence of an ancient mitochondrial introgression phenomenon between the two Talpa species, producing a particular phenotype in some hybrids; 3) existence of a hybrid zone between the two species; and 4) existence of a new Talpa species. NVAV was not detected in the southwestern moles, which begs the question of the potential presence of a particular Hantavirus sp. in this population and/or in the Iberian moles.

19.
Viruses ; 6(5): 1897-910, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24784569

RESUMEN

The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles prompted a further exploration of their host diversification by analyzing frozen, ethanol-fixed and RNAlater®-preserved archival tissues and fecal samples from 533 bats (representing seven families, 28 genera and 53 species in the order Chiroptera), captured in Asia, Africa and the Americas in 1981-2012, using RT-PCR. Hantavirus RNA was detected in Pomona roundleaf bats (Hipposideros pomona) (family Hipposideridae), captured in Vietnam in 1997 and 1999, and in banana pipistrelles (Neoromicia nanus) (family Vespertilionidae), captured in Côte d'Ivoire in 2011. Phylogenetic analysis, based on the full-length S- and partial M- and L-segment sequences using maximum likelihood and Bayesian methods, demonstrated that the newfound hantaviruses formed highly divergent lineages, comprising other recently recognized bat-borne hantaviruses in Sierra Leone and China. The detection of bat-associated hantaviruses opens a new era in hantavirology and provides insights into their evolutionary origins.


Asunto(s)
Quirópteros/virología , Variación Genética , Orthohantavirus/clasificación , Orthohantavirus/genética , Filogenia , Animales , Análisis por Conglomerados , Côte d'Ivoire , Orthohantavirus/aislamiento & purificación , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Vietnam
20.
Infect Genet Evol ; 20: 118-23, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23994121

RESUMEN

Elucidation of the molecular phylogeny of shrew-borne hantaviruses in sub-Saharan Africa has been hampered by the lack of full-length viral genomes. In this report, we present the complete genome analysis of a newfound hantavirus, designated Bowé virus, detected in ethanol-fixed intercostal muscle of a Doucet's musk shrew (Crocidura douceti), captured in southwestern Guinea in February 2012. Full-length amino acid sequence comparison of the S-, M- and L-segment gene products revealed that Bowé virus differed by 24.1-53.4%, 17.0-59.9% and 14.6-39.7%, respectively, from all other representative rodent-, shrew- and mole-borne hantaviruses. Phylogenetic analysis, using maximum-likelihood and Bayesian methods, under the GTR+I+Γ model of evolution, showed that Bowé virus shared a common ancestry with Tanganya virus, a hantavirus detected in the Therese's shrew (Crocidura theresae) in Guinea. Whole genome analysis of many more hantaviruses from sub-Saharan Africa are needed to better clarify how the radiation of African shrews might have contributed to the phylogeography of hantaviruses.


Asunto(s)
Infecciones por Hantavirus/veterinaria , Orthohantavirus/clasificación , Orthohantavirus/genética , Musarañas/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Genoma Viral/genética , Guinea , Orthohantavirus/aislamiento & purificación , Infecciones por Hantavirus/virología , Músculos Intercostales/virología , Filogenia , Filogeografía , ARN Viral/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...