Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Neuromuscul Dis ; 11(3): 679-685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461513

RESUMEN

Single exon duplications account for disease in a minority of Duchenne muscular dystrophy patients. Exon skipping in these patients has the potential to be highly therapeutic through restoration of full-length dystrophin expression. We conducted a 48-week open label study of casimersen and golodirsen in 3 subjects with an exon 45 or 53 duplication. Two subjects (aged 18 and 23 years) were non-ambulatory at baseline. Upper limb, pulmonary, and cardiac function appeared stable in the 2 subjects in whom they could be evaluated. Dystrophin expression increased from 0.94 % ±0.59% (mean±SD) of normal to 5.1% ±2.9% by western blot. Percent dystrophin positive fibers also rose from 14% ±17% at baseline to 50% ±42% . Our results provide initial evidence that the use of exon-skipping drugs may increase dystrophin levels in patients with single-exon duplications.


Asunto(s)
Distrofina , Exones , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Adolescente , Adulto Joven , Masculino , Oligonucleótidos/uso terapéutico , Duplicación de Gen
2.
Curr Neurol Neurosci Rep ; 23(11): 777-784, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37856049

RESUMEN

PURPOSE OF REVIEW: Sporadic late-onset nemaline myopathy (SLONM) is a rare adult-onset, acquired, muscle disease that can be associated with monoclonal gammopathy or HIV infection. The pathological hallmark of SLONM is the accumulation of nemaline rods in muscle fibers. We review here current knowledge about its presentation, pathophysiology, and management. RECENT FINDINGS: SLONM usually manifests with subacutely progressive proximal and axial weakness, but it can also present with chronic progressive weakness mimicking muscular dystrophy. The pathophysiology of the disease remains poorly understood, with evidence pointing to both autoimmune mechanisms and hematological neoplasia. Recent studies have identified histological, proteomic, and transcriptomic alterations that shed light on disease mechanisms and distinguish SLONM from inherited nemaline myopathies. A majority of SLONM patients respond to intravenous immunoglobulins, chemotherapy, or hematopoietic stem cell transplant. SLONM is a treatable myopathy, although its underlying etiology and pathomechanisms remain unclear. A high degree of suspicion should be maintained for this disease to reduce diagnostic delay and treatment in SLONM and facilitate its distinction from inherited nemaline myopathies.


Asunto(s)
Infecciones por VIH , Gammopatía Monoclonal de Relevancia Indeterminada , Miopatías Nemalínicas , Adulto , Humanos , Miopatías Nemalínicas/diagnóstico , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/terapia , Infecciones por VIH/complicaciones , Diagnóstico Tardío , Proteómica , Gammopatía Monoclonal de Relevancia Indeterminada/complicaciones , Gammopatía Monoclonal de Relevancia Indeterminada/tratamiento farmacológico , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Músculo Esquelético
3.
Mol Ther Methods Clin Dev ; 30: 486-499, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37706184

RESUMEN

Duchenne muscular dystrophy is an X-linked disorder typically caused by out-of-frame mutations in the DMD gene. Most of these are deletions of one or more exons, which can theoretically be corrected through CRISPR-Cas9-mediated knockin. Homology-independent targeted integration is a mechanism for achieving such a knockin without reliance on homology-directed repair pathways, which are inactive in muscle. We designed a system based on insertion into intron 19 of a DNA fragment containing a pre-spliced mega-exon encoding DMD exons 1-19, along with the MHCK7 promoter, and delivered it via a pair of AAV9 vectors in mice carrying a Dmd exon 2 duplication. Maximal efficiency was achieved using a Cas9:donor adeno-associated virus (AAV) ratio of 1:5, with Cas9 under the control of the SPc5-12 promoter. This approach achieved editing of 1.4% of genomes in the heart, leading to 30% correction at the transcript level and restoration of 11% of normal dystrophin levels. Treatment efficacy was lower in skeletal muscles. Sequencing additionally revealed integration of fragmentary and recombined AAV genomes at the target site. These data provide proof of concept for a gene editing system that could restore full-length dystrophin in individuals carrying mutations upstream of intron 19, accounting for approximately 25% of Duchenne muscular dystrophy patients.

4.
Neuromuscul Disord ; 33(2): 153-160, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36628841

RESUMEN

A rare disorder in the USA is one that affects <200,000 people, making inherited myopathies rare diseases. Increasing access to genetic testing has been instrumental for the diagnosis of inherited myopathies. Genetic findings, however, require clinical correlation due to variable phenotype, polygenic etiology of certain inherited disorders, and possible co-existing independent neuromuscular disorders. We searched the Mayo Clinic Rochester medical record (2004-2020) to identify adult patients carrying pathogenic variants or likely pathogenic variants in genes causative of myopathies and having a coexisting independent neuromuscular disorder classified as rare at https://rarediseases.info.nih.gov/. One additional patient was identified at Nationwide Children's hospital. Clinical and laboratory findings were reviewed. We identified 14 patients from 13 families fulfilling search criteria. Seven patients had a "double-trouble" inherited myopathy; two had an inherited myopathy with coexistent idiopathic myositis; three had an inherited myopathy with coexisting rare neuromuscular disorder of neurogenic type; a female DMD carrier had co-existing distal spinal muscular atrophy, which was featuring the clinical phenotype; and a patient with a MYH7 pathogenic variant had Sandhoff disease causing motor neuron disease. These cases highlight the relevance of correlating genetic findings, even when diagnostic, with clinical features, to allow precise diagnosis, optimal care, and accurate prognosis.


Asunto(s)
Enfermedad de la Neurona Motora , Enfermedades Musculares , Miositis , Enfermedades Neuromusculares , Femenino , Humanos , Enfermedades Raras , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Fenotipo , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética
5.
Acta Neuropathol Commun ; 11(1): 20, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703211

RESUMEN

Acquired sporadic late onset nemaline myopathy (SLONM) and inherited nemaline myopathy (iNM) both feature accumulation of nemaline rods in muscle fibers. Unlike iNM, SLONM is amenable to therapy. The distinction between these disorders is therefore crucial when the diagnosis remains ambiguous after initial investigations. We sought to identify biomarkers facilitating this distinction and to investigate the pathophysiology of nemaline rod formation in these different disorders. Twenty-two muscle samples from patients affected by SLONM or iNM underwent quantitative histological analysis, laser capture microdissection for proteomic analysis of nemaline rod areas and rod-free areas, and transcriptomic analysis. In all iNM samples, nemaline rods were found in subsarcolemmal or central aggregates, whereas they were diffusely distributed within muscle fibers in most SLONM samples. In SLONM, muscle fibers harboring nemaline rods were smaller than those without rods. Necrotic fibers, increased endomysial connective tissue, and atrophic fibers filled with nemaline rods were more common in SLONM. Proteomic analysis detected differentially expressed proteins between nemaline rod areas and rod-free areas, as well as between SLONM and iNM. These differentially expressed proteins implicated immune, structural, metabolic, and cellular processes in disease pathophysiology. Notably, immunoglobulin overexpression with accumulation in nemaline rod areas was detected in SLONM. Transcriptomic analysis corroborated proteomic findings and further revealed substantial gene expression differences between SLONM and iNM. Overall, we identified unique pathological and molecular signatures associated with SLONM and iNM, suggesting distinct underlying pathophysiological mechanisms. These findings represent a step towards enhanced diagnostic tools and towards development of treatments for SLONM.


Asunto(s)
Miopatías Nemalínicas , Humanos , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Proteómica , Fibras Musculares Esqueléticas/patología , Miocardio/patología , Músculo Esquelético/patología
7.
Emerg Infect Dis ; 28(11): 2281-2284, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36286008

RESUMEN

We report an imported case of myositis caused by a rare parasite, Haycocknema perplexum, in Australia in a 37-year-old man who had progressive facial, axial, and limb weakness, dysphagia, dysphonia, increased levels of creatine kinase and hepatic aminotransferases, and peripheral eosinophilia for 8 years. He was given extended, high-dose albendazole.


Asunto(s)
Miositis , Nematodos , Animales , Masculino , Humanos , Estados Unidos , Adulto , Albendazol , Miositis/parasitología , Creatina Quinasa , Transaminasas
9.
Hum Mutat ; 43(7): 869-876, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35332613

RESUMEN

Heterozygosity for missense variants and small in-frame deletions in GARS1 has been reported in patients with a range of genetic neuropathies including Charcot-Marie-Tooth disease type 2D (CMT2D), distal hereditary motor neuropathy type V (dHMN-V), and infantile spinal muscular atrophy (iSMA). We identified two unrelated patients who are each heterozygous for a previously unreported missense variant modifying amino-acid position 336 in the catalytic domain of GARS1. One patient was a 20-year-old woman with iSMA, and the second was a 41-year-old man with CMT2D. Functional studies using yeast complementation assays support a loss-of-function effect for both variants; however, this did not reveal variable effects that might explain the phenotypic differences. These cases expand the mutational spectrum of GARS1-related disorders and demonstrate phenotypic variability based on the specific substitution at a single residue.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Glicina-ARNt Ligasa , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Codón , Glicina-ARNt Ligasa/genética , Mutación , Fenotipo
10.
Neuropathol Appl Neurobiol ; 48(3): e12785, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34847621

RESUMEN

AIMS: Dystrophin, the protein product of the DMD gene, plays a critical role in muscle integrity by stabilising the sarcolemma during contraction and relaxation. The DMD gene is vulnerable to a variety of mutations that may cause complete loss, depletion or truncation of the protein, leading to Duchenne and Becker muscular dystrophies. Precise and reproducible dystrophin quantification is essential in characterising DMD mutations and evaluating the outcome of efforts to induce dystrophin through gene therapies. Immunofluorescence microscopy offers high sensitivity to low levels of protein expression along with confirmation of localisation, making it a critical component of quantitative dystrophin expression assays. METHODS: We have developed an automated and unbiased approach for precise quantification of dystrophin immunofluorescence in muscle sections. This methodology uses microscope images of whole-tissue sections stained for dystrophin and spectrin to measure dystrophin intensity and the proportion of dystrophin-positive coverage at the sarcolemma of each muscle fibre. To ensure objectivity, the thresholds for dystrophin and spectrin are derived empirically from non-sarcolemmal signal intensity within each tissue section. Furthermore, this approach is readily adaptable for measuring fibre morphology and other tissue markers. RESULTS: Our method demonstrates the sensitivity and reproducibility of this quantification approach across a wide range of dystrophin expression in both dystrophinopathy patient and healthy control samples, with high inter-operator concordance. CONCLUSION: As efforts to restore dystrophin expression in dystrophic muscle bring new potential therapies into clinical trials, this methodology represents a valuable tool for efficient and precise analysis of dystrophin and other muscle markers that reflect treatment efficacy.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Biopsia , Distrofina/análisis , Técnica del Anticuerpo Fluorescente , Humanos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Reproducibilidad de los Resultados
11.
Muscle Nerve ; 64(6): 734-739, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34617293

RESUMEN

INTRODUCTION/AIMS: Immune-mediated necrotizing myopathy (IMNM) is an immune-mediated myopathy typically presenting with progressive subacute weakness and characteristic, but nonspecific, myopathological findings. Atypical cases however can mimic other inherited or acquired myopathies, depriving patients of treatment. We describe a cohort of such patients. METHODS: We retrospectively identified IMNM patients who either previously carried a diagnosis of an inherited myopathy established on clinicopathological grounds or whose muscle biopsies displayed atypical features suggestive of a different myopathy. RESULTS: Among 131 IMNM patients, seven previously unreported patients (5%) met one of the above criteria. Three patients were diagnosed with limb-girdle muscular dystrophy on the basis of a chronic progressive course of weakness and family history of myopathy or cardiomyopathy. The other four patients displayed atypical histological features (two prominent mitochondrial abnormalities, one myofibrillar pathology, and one granulomatous inflammation). Immunostaining of biopsies from 12 additional IMNM patients did not identify myofibrillar pathology. The patient with granulomatous inflammation was known to have pulmonary sarcoidosis. Genetic testing for inherited myopathies was unrevealing. Antibodies against 3-hydroxy-3-methylglutaryl-CoA reductase or signal recognition particle were identified in 5 and 1 patients, respectively. Four patients presented with slowly progressive weakness over 3-13 y, while weakness was subacute over ≤6 mo in three patients. All patients responded to immunomodulatory therapy. DISCUSSION: Atypical clinical and histological features can occur in IMNM patients, causing delays in diagnosis and treatment. Clinicians should, therefore, consider IMNM in the differential diagnosis of unexplained proximal myopathies in spite of atypical clinical and myopathological findings.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Musculares , Miositis , Autoanticuerpos , Humanos , Músculo Esquelético/patología , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/patología , Miositis/complicaciones , Miositis/diagnóstico , Necrosis/patología , Estudios Retrospectivos
12.
Muscle Nerve ; 64(3): 255-269, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34133031

RESUMEN

Despite recent advances in the understanding of inherited muscle and neuromuscular junction diseases, as well as the advent of a wide range of genetic tests, patients continue to face delays in diagnosis of sometimes treatable disorders. These guidelines outline an approach to genetic testing in such disorders. Initially, a patient's phenotype is evaluated to identify myopathies requiring directed testing, including myotonic dystrophies, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, mitochondrial myopathies, dystrophinopathies, and oculopharyngodistal myopathy. Initial investigation in the remaining patients is generally a comprehensive gene panel by next-generation sequencing. Broad panels have a higher diagnostic yield and can be cost-effective. Due to extensive phenotypic overlap and treatment implications, genes responsible for congenital myasthenic syndromes should be included when evaluating myopathy patients. For patients whose initial genetic testing is negative or inconclusive, phenotypic re-evaluation is warranted, along with consideration of genes and variants not included initially, as well as their acquired mimickers.


Asunto(s)
Pruebas Genéticas , Mutación , Enfermedades Neuromusculares/diagnóstico , Guías como Asunto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Neuromusculares/genética , Fenotipo
14.
Front Neurol ; 12: 668180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108930

RESUMEN

Background: Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies and predominantly affects facial and shoulder girdle muscles. Previous case reports and cohort studies identified minor cardiac abnormalities in FSHD patients, but their nature and frequency remain incompletely characterized. Methods: We reviewed cardiac, neurological and genetic findings of 104 patients with genetically confirmed FSHD. Results: The most common conduction abnormality was complete (7%) or incomplete (5%) right bundle branch block (RBBB). Bifascicular block, left anterior fascicular block, complete atrioventricular block, and 2:1 atrioventricular block each occurred in 1% of patients. Atrial fibrillation or flutter were seen in 5% of patients. Eight percent of patients had heart failure with reduced ejection fraction and 25% had valvular disease. The latter included aortic stenosis in 6% (severe in 4% and moderate in 2%) and moderate aortic regurgitation in 8%. Mitral valve prolapse (MVP) was present in 9% of patients without significant mitral regurgitation. There were no significant associations between structural or conduction abnormalities and age, degree of muscle weakness, or size of the 4q deletion. Conclusions: Both structural and conduction abnormalities can occur in FSHD. The most common abnormalities are benign (RBBB and MVP), but more significant cardiac involvement was also observed. The presence of cardiac abnormalities cannot be predicted from the severity of the neurological phenotype, nor from the genotype.

15.
Semin Pediatr Neurol ; 37: 100877, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33892842

RESUMEN

Duchenne muscular dystrophy (DMD) is marked by pathogenic variants in the DMD gene, leading to reduced or absent dystrophin translation, muscle fiber destruction, loss of ambulation, cardiomyopathy, respiratory failure, and eventually death. Disease progression is slowed with use of prednisone or other corticosteroid agents. Gene replacement therapy, which is one of the focus points of this review, has emerged as the most promising potential treatment for DMD, though alternative RNA-based strategies have been employed for patients with specific pathogenic variants. While challenges remain, many of these novel therapeutic approaches hold promise for treating this devastating disease.


Asunto(s)
Distrofia Muscular de Duchenne , Terapia Genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Caminata
16.
Semin Pediatr Neurol ; 37: 100878, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33892848

RESUMEN

Spinal muscular atrophy is one of the most common neuromuscular disorders of childhood and has high morbidity and mortality. Three different disease-modifying treatments were introduced in the last 4 years: nusinersen, onasemnogene abeparvovec, and risdiplam. These agents have demonstrated safety and efficacy, but their long-term benefits require further study. Newborn screening programs are enabling earlier diagnosis and treatment and better outcomes, but respiratory care and other supportive measures retain a key role in the management of spinal muscular atrophy. Ongoing efforts seek to optimize gene therapy vectors, explore new therapeutic targets beyond motor neurons, and evaluate the role of combination therapy.


Asunto(s)
Terapia Genética , Atrofia Muscular Espinal , Humanos , Recién Nacido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Tamizaje Neonatal
17.
Am J Hum Genet ; 108(5): 840-856, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33861953

RESUMEN

JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families. Whole-exome sequencing identified rare homozygous or compound heterozygous JAG2 variants in all 13 families. The identified bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy. Transcriptome analysis of muscle tissue from two participants suggested misregulation of genes involved in myogenesis, including PAX7. In complementary studies, Jag2 downregulation in murine myoblasts led to downregulation of multiple components of the Notch pathway, including Megf10. Investigations in Drosophila suggested an interaction between Serrate and Drpr, the fly orthologs of JAG1/JAG2 and MEGF10, respectively. In silico analysis predicted that many Jagged2 missense variants are associated with structural changes and protein misfolding. In summary, we describe a muscular dystrophy associated with pathogenic variants in JAG2 and evidence suggests a disease mechanism related to Notch pathway dysfunction.


Asunto(s)
Proteína Jagged-2/genética , Distrofias Musculares/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Línea Celular , Niño , Preescolar , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Glucosiltransferasas/genética , Haplotipos/genética , Humanos , Proteína Jagged-1/genética , Proteína Jagged-2/química , Proteína Jagged-2/deficiencia , Proteína Jagged-2/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Persona de Mediana Edad , Modelos Moleculares , Músculos/metabolismo , Músculos/patología , Distrofias Musculares/patología , Mioblastos/metabolismo , Mioblastos/patología , Linaje , Fenotipo , Receptores Notch/metabolismo , Transducción de Señal , Secuenciación del Exoma , Adulto Joven
19.
JIMD Rep ; 55(1): 88-90, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32905144

RESUMEN

Mutations in glycogenin-1 (GYG1) cause an adult-onset polyglucosan body myopathy. We report here a patient presenting with late-onset distal myopathy. We wish to highlight this rare clinical phenotype of GYG1-related myopathy and the histological clues leading to its diagnosis.

20.
Neurol Genet ; 6(4): e456, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32754641

RESUMEN

OBJECTIVE: To report novel causal mutations, expanded clinical phenotypes, and clinical management of DNA methyltransferase 1 (DNMT1)-complex disorder. METHODS: Neurophysiologic testing, imaging, and genetic findings were summarized in clinical context for 5 cases with DNMT1-complex disorder. RESULTS: We identified 2 novel DNMT1 mutations (p.E510K and p.P1546A) by whole-exome sequencing (WES). Case 1 (p.E510K) presented with childhood ataxia, treatment-refractory seizures, and rapid cognitive decline in his 50s. Case 2 also had childhood onset and presented with seizures, language regression, hearing loss, narcolepsy with cataplexy symptoms, optic atrophy, sensory neuropathy, and hypogammaglobulinemia requiring IV immunoglobulin. Case 2 (p.P1546A) was identified with a de novo and the first mutation residing outside the targeting sequence domain. Case 3 (p.A570V) had paralytic asymmetric onset attacks triggered by emotionality and lasting sometimes for weeks. Neuropsychological testing showed executive dysfunction localizing to frontosubcortical and frontoparietal structures. He gradually developed left predominant brain atrophy. MRI showed T2 hyperintense lesions that enhanced on T1 postgadolinium images, and brain PET showed hypometabolism in atrophied regions. Case 4 (p.T497P) underwent left cochlear implant, resulting in significant hearing improvements at all tested frequencies (250-6,000 Hz). Case 5 (p.Y511H) had profound gait ataxia with posterior column atrophy of the spinal cord and abnormal evoked potentials primarily affecting the fasciculus gracilis. CONCLUSIONS: Broader application of WES further expands genotype-phenotype correlations of DNMT1-complex disorder. Two mutations are identified with early childhood onsets. The expanded new phenotypes include asymmetric brain hemiatrophy with parenchymal gadolinium enhancement, spinal cord atrophy, prolonged cataplectic spells, and hypogammaglobulinemia. Hearing loss treatment by cochlear implantation is helpful and should be considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...