Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 66(3): 919-32, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25385769

RESUMEN

A major antiviral mechanism in plants is mediated by RNA silencing, which relies on the cleavage of viral dsRNA into virus-derived small interfering RNAs (vsiRNAs) by DICER-like enzymes. Members of the Argonaute (AGO) family of endonucleases then use these vsiRNA as guides to target viral RNA. This can result in a phenomenon known as recovery, whereby the plant silences viral gene expression and recovers from viral symptoms. Endogenous mRNAs can also be targeted by vsiRNAs in a phenomenon known as virus-induced gene silencing (VIGS). Although related to other RNA silencing mechanisms, it has not been established if recovery and VIGS are mediated by the same molecular mechanisms. We used tobacco rattle virus (TRV) carrying a fragment of the phytoene desaturase (PDS) gene (TRV-PDS) or expressing green fluorescent protein (TRV-GFP) as readouts for VIGS and recovery, respectively, in Arabidopsis ago mutants. Our results demonstrated roles for AGO2 and AGO4 in susceptibility to TRV, whereas VIGS of endogenous genes appeared to be largely mediated by AGO1. However, recovery appeared to be mediated by different components, as all the aforementioned mutants were able to recover from TRV-GFP inoculation. TRV RNAs from recovered plants associated less with ribosomes, suggesting that recovery involves translational repression of viral transcripts. Translationally repressed RNAs often accumulate in RNA processing bodies (PBs), where they are eventually processed by decapping enzymes. Consistent with this, we found that viral recovery induced increased PB formation and that a decapping mutant (DCP2) showed increased VIGS and virus RNA accumulation, indicating an important role for PBs in eliminating viral RNA.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/virología , Proteínas Argonautas/genética , Regulación de la Expresión Génica de las Plantas , Virus ARN/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Fluorescentes Verdes/genética , Oxidorreductasas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo
2.
Plant Cell ; 24(4): 1327-51, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22517321

RESUMEN

Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.


Asunto(s)
Secuencia Conservada/genética , Hongos/enzimología , Interacciones Huésped-Patógeno , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Plantas/microbiología , Hongos/genética , Proteínas Quinasas Activadas por Mitógenos/clasificación , Proteínas Quinasas Activadas por Mitógenos/genética
3.
Plant Physiol ; 157(3): 1379-93, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21873571

RESUMEN

Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Populus/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Dedos de Zinc , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Sitios de Unión , Núcleo Celular/enzimología , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Fosforilación , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Populus/enzimología , Populus/genética , Populus/microbiología , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Protoplastos/metabolismo
4.
Photosynth Res ; 104(1): 41-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20012201

RESUMEN

Poplars are challenged by a wide range of pathogens during their lifespan, and have an innate immunity system that activates defence responses to restrict pathogen growth. Large-scale expression studies of poplar-rust interactions have shown concerted transcriptional changes during defence responses, as in other plant pathosystems. Detailed analysis of expression profiles of metabolic pathways in these studies indicates that photosynthesis and respiration are also important components of the poplar response to rust infection. This is consistent with our current understanding of plant pathogen interactions as defence responses impose substantive demands for resources and energy that are met by reorganization of primary metabolism. This review applies the results of poplar transcriptome analyses to current research describing how plants divert energy from plant primary metabolism for resistance mechanisms.


Asunto(s)
Basidiomycota/fisiología , Fotosíntesis/fisiología , Enfermedades de las Plantas , Hojas de la Planta/fisiología , Populus/fisiología , Metabolismo de los Hidratos de Carbono/fisiología , Respiración de la Célula/fisiología , Metabolismo Energético/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Populus/metabolismo , Populus/microbiología
5.
BMC Genomics ; 7: 223, 2006 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16945144

RESUMEN

BACKGROUND: As in other eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. These modules rapidly amplify and transduce extracellular signals into various appropriate intracellular responses. While extensive work has been conducted on the post-translational regulation of specific MAPKKs and MAPKs in various plant species, there has been no systematic investigation of the genomic organization and transcriptional regulation of these genes. RESULTS: Ten putative poplar MAPKK genes (PtMKKs) and 21 putative poplar MAPK genes (PtMPKs) have been identified and located within the poplar (Populus trichocarpa) genome. Analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profiles of all members of these two gene families were also analyzed in 17 different poplar organs, using gene-specific primers directed at the 3'-untranslated region of each candidate gene and real-time quantitative PCR. Most PtMKKs and PtMPKs were differentially expressed across this developmental series. CONCLUSION: This analysis provides a complete survey of MAPKK and MAPK gene expression profiles in poplar, a large woody perennial plant, and thus complements the extensive expression profiling data available for the herbaceous annual Arabidopsis thaliana. The poplar genome is marked by extensive segmental and chromosomal duplications, and within both kinase families, some recently duplicated paralogous gene pairs often display markedly different patterns of expression, consistent with the rapid evolution of specialized protein functions in this highly adaptive species.


Asunto(s)
Perfilación de la Expresión Génica , Genoma de Planta/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Populus/genética , Regiones no Traducidas 3'/genética , Cromosomas de las Plantas/genética , Exones/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Intrones/genética , Modelos Genéticos , Proteínas de Plantas/genética , Estructuras de las Plantas/enzimología , Estructuras de las Plantas/genética , Populus/enzimología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
6.
Trends Plant Sci ; 11(4): 192-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16537113

RESUMEN

MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, and their components are encoded by highly conserved genes. The recent availability of genome sequences for rice and poplar now makes it possible to examine how well the previously described Arabidopsis MAPK and MAPKK gene family structures represent the broader evolutionary situation in plants, and analysis of gene expression data for MPK and MKK genes in all three species allows further refinement of those families, based on functionality. The Arabidopsis MAPK nomenclature appears sufficiently robust to allow it to be usefully extended to other well-characterized plant systems.


Asunto(s)
Proteínas de Arabidopsis/clasificación , Arabidopsis/enzimología , Genoma de Planta , Quinasas de Proteína Quinasa Activadas por Mitógenos/clasificación , Proteínas Quinasas Activadas por Mitógenos/clasificación , Familia de Multigenes , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genómica , Sistema de Señalización de MAP Quinasas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Filogenia , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...