Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 25(6): 104369, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35620432

RESUMEN

Compliant elastomer tubing with a fabric "jacket" has been essential in various applications as soft robotic actuators, such as in biomedical exomuscles and massage therapy implements. Here, our study shows that a similar design concept can be an effective strategy in realizing passive regulation in the tube's distension, as well as in preventing aneurysm-like asymmetric rupture of the tube. A custom hydraulic pressure testing rig was built to perform experiments. The jacketed tubes initially deform rapidly as pressure increases, but a self-regulation behavior suppresses the tube's continued distension by strain-stiffening of the "jacket". In addition, highly asymmetric distension, common to elastomeric tubes due to imperfection in fabrication, is prevented dramatically by the "jacket". A three-dimensional finite element model predicts the distension of all tested tubes quantitatively across the entire experimental pressure ranges and beyond. Incorporating custom-designed kirigami relief patterns in the "jackets" expands the potential of the elastomeric tubes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA