Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786773

RESUMEN

Climate neutrality for the year 2050 is the goal assumed at the level of the EU27+UK. As Romania is no exception, it has assumed the gradual mitigation of pollution generated by the energy sector, and by 2030, according to 'Fit for 55', the share of energy from renewable sources must reach 42.5% from total energy consumption. For the rest of the energy produced from traditional sources, natural gas and/or coal, modern technologies will be used to retain the gaseous noxes. Even if they are not greenhouse gases, NO and SO2, generated from fossil fuel combustion, cause negative effects on the environment and biodiversity. The adsorption capacity of different materials, three nanomaterials developed in-house and three commercial adsorbents, both for NO and SO2, was tackled through gas chromatography, elemental analysis, and Fourier-transform infrared spectroscopy. Fe-BTC has proven to be an excellent material for separation efficiency and adsorption capacity under studied conditions, and is shown to be versatile both in the case of NO (80.00 cm3/g) and SO2 (63.07 cm3/g). All the developed nanomaterials generated superior results in comparison to the commercial adsorbents. The increase in pressure enhanced the performance of the absorption process, while temperature showed an opposite influence, by blocking the active centers on the surface.

2.
Top Curr Chem (Cham) ; 381(6): 31, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906318

RESUMEN

Human existence and societal growth are both dependent on the availability of clean and fresh water. Photocatalysis is a type of artificial photosynthesis that uses environmentally friendly, long-lasting materials to address energy and environmental issues. There is currently a considerable demand for low-cost, high-performance wastewater treatment equipment. By changing the structure, size, and characteristics of nanomaterials, the use of nanotechnology in the field of water filtration has evolved dramatically. Semiconductor-assisted photocatalysis has recently advanced to become among the most promising techniques in the fields of sustainable energy generation and ecological cleanup. It is environmentally beneficial, cost-effective, and strictly linked to the zero waste discharge principle used in industrial effluent treatment. Owing to the reduction or removal of created unwanted byproducts, the green synthesis of photoactive nanomaterial is more beneficial than chemical synthesis approaches. Furthermore, unlike chemical synthesis methods, the green synthesis method does not require the use of expensive, dangerous, or poisonous ingredients, making it a less costly, easy, and environmental method for photocatalyst synthesis. This work focuses on distinct greener synthesis techniques utilized for the production of new photocatalysts, including metals, metal doped-metal oxides, metal oxides, and plasmonic nanostructures, including the application of artificial intelligence and machine learning to the design and selection of an innovative photocatalyst in the context of energy and environmental challenges. A brief overview of the industrial and environmental applications of photocatalysts is also presented. Finally, an overview and recommendations for future research are given to create photocatalytic systems with greatly improved stability and efficiency.


Asunto(s)
Inteligencia Artificial , Nanoestructuras , Humanos , Industrias , Aprendizaje Automático , Óxidos
3.
Nanomaterials (Basel) ; 13(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836278

RESUMEN

Until reaching climate neutrality by attaining the EU 2050 level, the current levels of CO2 must be mitigated through the research and development of resilient technologies. This research explored potential approaches to lower CO2 emissions resulting from combustion fossil fuels in power plant furnaces. Different nanomaterials (MOFs versus silica nanoparticles) were used in this context to compare their effectiveness to mitigate GHG emissions. Porous materials known as metal-organic frameworks (MOFs) are frequently employed in sustainable CO2 management for selective adsorption and separation. Understanding the underlying mechanism is difficult due to their textural characteristics, the presence of functional groups and the variation in technological parameters (temperature and pressure) during CO2-selective adsorption. A silica-based nanomaterial was also employed in comparison. To systematically map CO2 adsorption as a function of the textural and compositional features of the nanomaterials and the process parameters set to a column-reactor system (CRS), 160 data points were collected for the current investigation. Different scenarios, as a function of P (bar) or as a function of T (K), were designed based on assumptions, 1 and 5 vs. 1-10 (bar) and 313.15 and 373.15 vs. 313.15-423.15 (K), where the regression analyses through Pearson coefficients of 0.92-0.95, coefficients of determination of 0.87-0.90 and p-values < 0.05, on predictive and on-site laboratory data, confirmed the performances of the CRS.

4.
Sci Total Environ ; 899: 165344, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37414185

RESUMEN

Compound specific isotope analysis was extensively used to characterise the environmental processes associated with the abiotic and biotic transformation of persistent halogenated organic pollutants including those of contaminants of emerging concern (CECs). In the last years, the compound specific isotope analysis was applied as tool to evaluate the environmental fate and was expanded to larger molecules like brominated flame retardants and polychlorinated biphenyls. Multi-element (C, H, Cl, Br) CSIA methods have been also employed both in laboratory and field experiments. Nevertheless, despite the instrumental advances of isotope ratio mass spectrometers systems, the instrumental detection limit for gas chromatography-combustion-isotope ratio mass spectrometer (GC-C-IRMS) systems is challenging, especially when it is utilized to δ13C analysis. Liquid chromatography-combustion isotope ratio mass spectrometry methods are challenging, taking into consideration the chromatographic resolution required when analysing complex mixtures. For chiral contaminants, enantioselective stable isotope analysis (ESIA) has turned up as alternative approach but, up to now, it has been used for a limited number of compounds. Taking into consideration the occurrence of new emerging halogenated organic contaminants, new GC and LC methods for non-target screening using high resolution mass spectrometry are needed to be developed prior to the compound specific isotope analysis (CSIA) methods.

5.
Materials (Basel) ; 16(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241444

RESUMEN

In terms of isotopic technologies, it is essential to be able to produce materials with an enriched isotopic abundance (i.e., a compound isotopic labelled with 2H, 13C, 6Li, 18O or 37Cl), which is one that differs from natural abundance. The isotopic-labelled compounds can be used to study different natural processes (like compounds labelled with 2H, 13C, or 18O), or they can be used to produce other isotopes as in the case of 6Li, which can be used to produce 3H, or to produce LiH that acts like a protection shield against fast neutrons. At the same time, 7Li isotope can be used as a pH controller in nuclear reactors. The COLEX process, which is currently the only technology available to produce 6Li at industrial scale, has environmental drawbacks due to generation of Hg waste and vapours. Therefore, there is a need for new eco-friendly technologies for separation of 6Li. The separation factor of 6Li/7Li with chemical extraction methods in two liquid phases using crown ethers is comparable to that of COLEX method, but has the disadvantages of low distribution coefficient of Li and the loss of crown ethers during the extraction. Electrochemical separation of lithium isotopes through the difference in migration rates between 6Li and 7Li is one of the green and promising alternatives for the separation of lithium isotopes, but this methodology requires complicated experimental setup and optimisation. Displacement chromatography methods like ion exchange in different experimental configurations have been also applied to enrich 6Li with promising results. Besides separation methods, there is also a need for development of new analysis methods (ICP-MS, MC-ICP-MS, TIMS) for reliable determination of Li isotope ratios upon enrichment. Considering all the above-mentioned facts, this paper will try to emphasize the current trends in separation techniques of lithium isotopes by exposing all the chemical separation and spectrometric analysis methods, and highlighting their advantages and disadvantages.

6.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36850492

RESUMEN

The topic addressed in this article is part of the current concerns of modernizing power systems by promoting and implementing the concept of smart grid(s). The concepts of smart metering, a smart home, and an electric car are developing simultaneously with the idea of a smart city by developing high-performance electrical equipment and systems, telecommunications technologies, and computing and infrastructure based on artificial intelligence algorithms. The article presents contributions regarding the modeling of consumer classification and load profiling in electrical power networks and the efficiency of clustering techniques in their profiling as well as the simulation of the load of medium-voltage/low-voltage network distribution transformers to electricity meters.

7.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679187

RESUMEN

An important problem for the oil industry is the deposition of paraffin on pipelines during the transit of crude oil and restart processes at low temperature. In this regard, the need for suitable methods of wax deposition has attracted substantial attention. Therefore, pour point depressants (PPDs) are considered a critical processing aid to modify the paraffin crystallization and improve the flow of waxy crude oil. The effect of pendants in comb-type copolymers on the ability of crude oil to flow in the cold is examined in the current study. Such PPDs were first created by the free radical polymerization of maleic anhydride with benzyl oleate to create the poly (benzyl oleate-co-maleic anhydride). The resultant copolymer was then aminated with alkyl amine (stearyl amine) (C18H39N) to form pendant alkyl amine chains. The esterified copolymers were structurally characterized by Fourier Transform Infrared, X-ray diffraction spectral analysis, and scanning electron microscopy. Moreover, the potential interactions between PPD and waxes were investigated by using differential scanning calorimetry, X-ray diffraction, and light microscopy. The obtained PPDs, which are effective at a dose of 2000 ppm, were able to reduce the pour point by up to 3 °C. The viscosity and yield stress of the petroleum waxy crude oil were revealed by rheometer.

8.
Materials (Basel) ; 15(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36233935

RESUMEN

The capitalization of agri-food waste is essential for the sustainability of a circular economy. This work focuses on a solution to eliminate such waste, meat and bone meal (MBM), which is produced in large quantities by the food industry and is prohibited for use as animal feed under the European directives. Therefore, with the focus of converting waste to energy, the catalytic pyrolysis of MBM in the presence of mesoporous silica nanocatalysts (SBA-3 and SBA-16 materials and metallic derivates) was investigated in a home-made reactor for the production of renewable energy. The mesoporous silica materials were synthesized using relatively simple methods and then characterized in order to determine their morpho-structural characteristics. The MBM pyrolysis behavior under different experimental conditions was examined in detail, both in the presence and absence of the new catalysts. The resulting MBM-based pyrolysis products, MBMPYOILs and MBMPYGASs, were also assessed as potential alternative fuels, highlighting comparable energy values to conventional fuels. The outcomes of this investigation offer a potential pathway to the clean production of gas and oil, thus promoting the high-grade utilization of MBM waste.

9.
Materials (Basel) ; 15(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683144

RESUMEN

Water covers about 70% of the Earth's surface, but the amount of freshwater available for human use is only 2.5% and, although it is continuously replenished via the water cycle, freshwater is a finite and limited resource. The Earth's water is affected by pollution and while water quality is an issue of global concern, the specific regulations on contaminants of emerging concern (CECs) are limited. In order to achieve the goals set by EU regulations, the treatment of wastewater is a scientifically and technologically challenging issue. Metal-organic frameworks (MOFs) are promising materials used for the removal of priority and emerging contaminants from wastewater, since they can mitigate those contaminants via both adsorption as well as catalysis processes. MOFs can offer selective adsorption of CECs by various adsorption mechanisms. The catalytic removal of priority and emerging organic contaminants from wastewater using MOFs implies Fenton, electro-Fenton, and photo-Fenton processes. Overall, MOFs can be considered as promising materials for the elimination of priority and emerging organic contaminants from various wastewater types, but the involved processes must be studied in detail for a larger number of compounds.

11.
Artículo en Inglés | MEDLINE | ID: mdl-34948756

RESUMEN

Volatile organic compounds (VOCs) comprise various organic chemicals which are released as gases from different liquids or solids. The nature and impact of the health effects are dependent on the VOCs concentrations and, also, on the exposure time. VOCs are present in different household, industrial or commercial and products, but their accumulation in air and water has primarily gained attention. Among VOCs, trichloroethylene and vinyl chloride are the most toxic and carcinogenic compounds. In order to improve the indoor air and water quality, VOCs can be removed via efficient approaches involving nanomaterials, by using techniques such as adsorption, catalysis or photocatalysis. In the recent years, the development of manufacturing procedures, characterization techniques and testing processes has resulted in the growth of na-nomaterials obtaining and applications, creating great possibilities and also a tremendous prov-ocation in applying them for highly efficient VOCs removal. This review is intended to contrib-ute to the improvement of awareness and knowledge on the great potential that nanomaterials have in VOCs removal, in order a to improve indoor and outdoor environment, but also the worldwide water sources.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Nanoestructuras , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles/análisis , Calidad del Agua
12.
Sci Total Environ ; 801: 149672, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34438148

RESUMEN

The biodegradation of hexachlorocyclohexanes (HCHs) is known to be accompanied by isotope fractionation of carbon (13C/12C), but no systematic studies were performed on abiotic degradation of HCH isomers by iron (II) minerals. In this study, we explored the carbon isotope fractionation of α-HCH during dechlorination by FeS nanoparticles at different pH values. The results of three different experiments showed that the apparent rate constants during dehalogenation of α-HCH by FeS increased with pH. The lowest apparent rate constant value α-HCH during dehalogenation by FeS was 0.009 d-1 at pH value of 2.4, while the highest was 1.098 d-1 at pH 11.8. α-HCH was completely dechlorinated by FeS only at pH values 9.9 and 11.8, while the corresponding apparent rate constants were 0.253 d-1 and 1.098 d-1, respectively. Regardless of the pH used, the 1,2,4-trichlorobenzene (1,2,4-TCB), 1,2-dichlorobenzene (1,2-DCB), and benzene were the dominant degradation products of α-HCH. An enrichment factor (εC) of -4.7 ± 1.3‰ was obtained for α-HCH using Rayleigh model, which is equivalent to an apparent kinetic isotope effect (AKIEC) value of 1.029 ± 0.008 for dehydrohalogenation, and of 1.014 ± 0.004 for dihaloelimination, respectively. The magnitude of isotope fractionation from this study suggests that abiotic isotope fractionation by FeS must be taken into account in anoxic sediments and aquifers contaminated with HCH isomers, when high concentrations of FeS are present in the above-mentioned anoxic environments.


Asunto(s)
Nanopartículas , Biodegradación Ambiental , Isótopos de Carbono/análisis , Compuestos Ferrosos , Hexaclorociclohexano , Concentración de Iones de Hidrógeno
13.
Membranes (Basel) ; 11(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494390

RESUMEN

In order to obtained high selective membrane for industrial applications (such as natural gas purification), mixed matrix membranes (MMMs) were developed based on polysulfone as matrix and MCM-41-type silica material (obtained from coal fly ash) as filler. As a consequence, various quantities of filler were used to determine the membranes efficiency on CO2/CH4 separation. The coal fly ash derived silica nanomaterial and the membranes were characterized in terms of thermal stability, homogeneity, and pore size distribution. There were observed similar properties of the obtained nanomaterial with a typical MCM-41 (obtained from commercial silicates), such as high surface area and pore size distribution. The permeability tests highlighted that the synthesized membranes can be applicable for CO2 removal from CH4, due to unnoticeable differences between real and ideal selectivity. Additionally, the membranes showed high resistance to CO2 plasticization, due to permeability decrease even at high feed pressure, up to 16 bar.

14.
Nanomaterials (Basel) ; 10(3)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151006

RESUMEN

In order to meet the increasing energy demand and to decrease the dependency on coal, environmentally friendly methods for fly ash utilization are required. In this respect, the priority is to identify the fly ash properties and to consider its potential as raw material in the obtaining of high-value materials. The physico-chemical and structural characteristics of the fly ash coming from various worldwide power plants are briefly presented. The fly ash was sampled from power plants where the combustion of lignite and hard coal in pulverized-fuel boilers (PC) and circulating fluidized bed (CFB) boilers was applied. The fly ash has high silica content. Due to this, the fly ash can be considered a potential raw material for the synthesis of nanoporous materials, such as zeolites or mesoporous silica. The samples with the highest content of SiO2 can be used to obtain mesoporous silica materials, such as MCM-41 or SBA-15. The resulting mesoporous silica can be used for removing/capture of CO2 from emissions or for wastewater treatment. The synthesis of various porous materials using wastes would allow a high level of recycling for a sustainable society with low environmental impact.

15.
Sci Total Environ ; 722: 137914, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32208267

RESUMEN

This paper is an overview of screening methods recently developed for emerging halogenated contaminants and their transformation products. The target screening methods are available only for a limited number of emerging pollutants since the reference standards for these compounds are not always available, but a risk assessment of those micropollutants in environment must be performed anyhow. Therefore, the chromatographic techniques hyphenated with high resolution mass spectrometry (HRMS) trend to become indispensable methods for suspect and non-target screening of emerging halogenated contaminants. HRMS is also an effective tool for tentatively identification of the micropollutants' transformation products existing in much lower concentrations. To assess the transformation pathway of halogenated contaminants in environment, the non-target screening methods must be combined with biodegradation lab experiments and also with advanced oxidation and reduction processes that can mimic the transformation on these contaminants in environment. It is expected that in the future, the accurate-mass full-spectra of transformation products recorded by HRMS will be the basic information needed to elucidate the transformation pathways of emerging halogenated contaminants in aquatic environment.

16.
Front Chem ; 7: 332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263688

RESUMEN

The development of membrane technology for gas separation processes evolved with the fabrication of so-called mixed matrix membranes (MMMs) as an alternative to neat polymers, in order to improve the overall membrane effectiveness. Once the mixed matrix membranes are used, the gas separation properties of the porous materials used as fillers are combined with the economical processability and desirable mechanical properties of polymer matrix. Mixed mesoporous silica/polymer membranes with high CO2 and O2 permeability and selectivity were designed and prepared by incorporating MCM-41 particles into a polymer matrix. Ordered mesoporous silica MCM-41 with high surface confirmed by BET analysis were obtained and functionalized with amino groups. In order to obtain the mixed membranes, the mesoporous silica was embedded into the polysulfone matrix (PSF). Flat mixed matrix membranes with 5, 10, and 20 wt% MCM-41 and MCM-41-NH2 loadings have been prepared via the polymer solution casting method. The phase's interactions were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and thermogravimetry (TGA), while the gas separation performances were evaluated using pure gases (CO2, O2, N2). The MCM-41/PSF and MCM-41-NH2/PSF membranes exhibited increased permeabilities for O2 (between 1.2 and 1.7 Barrer) and CO2 (between 4.2 and 8.1 Barrer) compared to the neat membrane (0.8 Barrer). The loss of selectivity for the O2/N2 (between 6 and 8%) and CO2/N2 (between 25 and 41%) gas pairs was not significant compared with the pure membrane (8 and 39%, respectively). The MCM-41/PSF membranes were more selective for CO2/N2 than the O2/N2 pair, due to the size difference between CO2 and N2 molecules and to the condensability of CO2, leading to an increase of solubility. Stronger interactions have been noticed for MCM-41-NH2/PSF membranes due to the amino groups, with the selectivity increasing for both gas pairs compared with the MCM-41/PSF membranes.

17.
Sci Total Environ ; 566-567: 1120-1130, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27265736

RESUMEN

Enantioselective analysis is a powerful tool for the discrimination of biotic and abiotic transformation processes of chiral environmental contaminants because their environmental biodegradation is mostly stereospecific. However, it is challenging when applied to new contaminants since enantioselective analysis methods are currently available only for a limited number of compounds. The enantioselective analysis of chiral novel brominated flame retardants (NBFRs) either using gas chromatography (GC) or liquid chromatography (LC) with various chiral stationary phases (CSP) coupled with various mass spectrometric techniques was extensively discussed. The elution order of hexabromocyclododecane (HBCD) enantiomers in chiral LC was reviewed using the experimental LC data combined also with predictions from a multi-mode Hamiltonian dynamics simulation model based on interaction energies of HBCD enantiomers with ß-permethylated cyclodextrin. The further development of analytical methodologies for new chiral BFRs using advanced hyphenated analytical techniques, but also the next generation mass spectrometer analyzers (i.e. GC-Qrbitrap MS-MS, LC-Qrbitrap MS-MS), will contribute to a better characterization of the transformation pathways of chiral BFRs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA