Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 243: 120413, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544110

RESUMEN

In the context of climate change policies, buildings must implement solutions to reduce energy and water consumption. One such solution is showering with water atomization showerheads, which can significantly reduce water and energy usage. However, the lack of risk assessment for users' health has hindered the widespread adoption of this technology. To address this gap, we assess the risk of spreading bacteria, in particular the pathogenic bacterium Legionella pneumophila, from shower hose biofilms of different ages grown under controlled or uncontrolled conditions considering different levels of water hardness, during showering using water atomization showerheads (ECO) or continuous flow showerheads (STA). We compared the aerosol and bioaerosol emission - total, viable and cultivable - during a 10 min shower event between the two shower systems. We showed that the water-atomization showerhead emitted slightly more nanoparticles smaller than 0.45 µm and slightly fewer particles larger than 0.5 µm than the continuous flow showerhead. Additionally, ECO showerheads emitted fewer cultivable bacteria than STA, regardless of the biofilm's age or growth conditions. When Legionella pneumophila was detected in biofilms, ECO showerheads released slightly less cultivable Legionella in the first flush of shower water compared to the STA, ranging from 6.0 × 102 to 1.6 × 104 CFU·L-1. However, cultivable L. pneumophila was not detected in the aerosols emitted during showering with either showerhead. These findings suggest that emerging water-drop emission technologies might affect human exposure to aerosols differently than traditional systems, emphasizing the importance of assessing the health risks associated with any new shower system. Additionally, these findings provide valuable insights for achieving a balance between water and energy conservation.


Asunto(s)
Legionella pneumophila , Legionella , Humanos , Agua , Microbiología del Agua , Abastecimiento de Agua , Aerosoles
2.
J Fungi (Basel) ; 8(10)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36294610

RESUMEN

Exposure to particular microbiome compositions in the built environment can affect human health and well-being. Identifying the drivers of these indoor microbial assemblages is key to controlling the microbiota of the built environment. In the present study, we used culture and metabarcoding of the fungal Internal Transcribed Spacer ribosomal RNA region to assess whether small-scale variation in the built environment influences the diversity, composition and structure of indoor air fungal communities between a heating and an unheated season. Passive dust collectors were used to collect airborne fungi from 259 dwellings representative of three major building periods and five building environments in one city-Lausanne (Vaud, Switzerland)-over a heating and an unheated period. A homogenous population (one or two people with an average age of 75 years) inhabited the households. Geographic information systems were used to assess detailed site characteristics (altitude, proximity to forest, fields and parks, proximity to the lake, and density of buildings and roads) for each building. Our analysis indicated that season was the factor that explained most of the variation in colonies forming unit (CFU) concentration and indoor mycobiome composition, followed by the period of building construction. Fungal assemblages were more diverse during the heating season than during the unheated season. Buildings with effective insulation had distinct mycobiome compositions from those built before 1975 - regardless of whether they were constructed with pre-1945 technology and materials or 1945 - 1974 ones. The urban landscape-as a whole-was a significant predictor of cultivable Penicillium load-the closer the building was to the lake, the higher the Penicillium load-but not of fungal community composition. Nevertheless, the relative abundance of eleven fungal taxa detected by metabarcoding decreased significantly with the urbanization gradient. When urban landscape descriptors were analyzed separately, the explanatory power of proximity to vegetation in shaping fungal assemblages become significant, indicating that land cover type had an influence on fungal community structure that was obscured by the effects of building age and sampling season. In conclusion, indoor mycobiomes are strongly modulated by season, and their assemblages are shaped by the effectiveness of building insulation, but are weakly influenced by the urban landscape.

3.
Sci Rep ; 12(1): 15643, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123527

RESUMEN

Metal fumes fever (MFF) is an inflammatory condition, whose mechanism is yet unclear, associated with the inhalation of metal fumes, particularly zinc. In this study we investigate experimentally the hypothesis of a two-step mechanism of MFF onset: (1) the photocatalytic production of airborne hydrogen peroxide (H2O2) via ZnO and (2) the production of hydroxyl radicals (HOׄ) through Fenton reaction via magnetite (Fe3O4) nanoparticles. Photocatalysis and Fenton reaction products were measured using a multiscattering-enhanced absorbance device and assessing the degradation of bromophenol blue with microplate photometry, respectively. We observed that in the presence of UV, ZnO produces 3 to 4-times more H2O2 than UV alone or that non-UV irradiated ZnO. In the presence of biologically-relevant ligands, we also measured a Fenton reaction at physiological pH with either Fe(II), Fe(III) or Fe3O4 nanoparticles. Our results support the hypothesis of a two-step mechanism of MFF onset, in which the prior presence of Fe in the lungs exacerbates the oxidative stress, triggered by the photocatalysis of ZnO, a situation that could occurs when welding galvanized steel. More broadly, this raises the question of the role of the Fenton mechanism in respiratory exposure to metal particles and its possible contribution to other lung diseases.


Asunto(s)
Nanopartículas , Óxido de Zinc , Azul de Bromofenol , Bisinosis , Compuestos Férricos , Óxido Ferrosoférrico , Peróxido de Hidrógeno , Acero , Zinc
4.
Artículo en Inglés | MEDLINE | ID: mdl-35328980

RESUMEN

The increase in legionellosis incidence in the general population in recent years calls for a better characterization of the sources of infection, such as showering. Water-efficient shower systems that use water-atomizing technology have been shown to emit slightly more inhalable particles in the range of bacterial sizes than the traditional systems; however, the actual rate of bacterial emission remains poorly documented. The aim of this study was to assess the aerosolisation rate of the opportunistic water pathogen Legionella pneumophila during showering with one shower system representative of each technology. To achieve this objective, we performed controlled experiments inside a glove box and determined the emitted dose and viability of airborne Legionella. The bioaerosols were sampled with a Coriolis® Delta air sampler and the total number of viable (cultivable and noncultivable) Legionella was determined by flow cytometry and culture. We found that the rate of viable and cultivable Legionella aerosolized from the water jet was similar between the two showerheads: the viable fraction represents 0.02% of the overall bacteria present in water, while the cultivable fraction corresponds to only 0.0005%. The two showerhead models emitted a similar ratio of airborne Legionella viable and cultivable per volume of water used. Therefore, the risk of exposure to Legionella is not expected to increase significantly with the new generation of water-efficient showerheads.


Asunto(s)
Legionella pneumophila , Legionella , Legionelosis , Humanos , Agua , Microbiología del Agua , Abastecimiento de Agua
5.
Artículo en Inglés | MEDLINE | ID: mdl-35329223

RESUMEN

Improving the energy efficiency of buildings is a major target in developed countries toward decreasing their energy consumption and CO2 emissions. To meet this target, a large number of countries have established energy codes that require buildings to be airtight. While such a retrofitting approach has improved health outcomes in areas with heavy traffic, it has worsened the health outcomes in Nordic countries and increased the risk of lung cancer in areas with high levels of radon emissions. This review highlights the importance of adapting the characteristics of energy-efficient residential buildings to the location, age, and health of inhabitants to guarantee healthy indoor pollutant levels. The implementation of mechanical ventilation in new energy-efficient buildings has solved some of these problems; however, for others, a decrease in the level of outdoor pollutants was still required in order to achieve a good indoor air quality. A good balance between the air exchange rate and the air humidity level (adapted to the location) is key to ensuring that exposure to the various pollutants that accumulate inside energy-efficient buildings is low enough to avoid affecting inhabitants' health. Evidence of the protective effect of mechanical ventilation should be sought in dwellings where natural ventilation allows pollutants to accumulate to threatening levels. More studies should be carried out in African and Asian countries, which, due to their rapid urbanization, use massive volumes of unproven/unrated building materials for fast-track construction, which are frequent sources of formaldehyde and VOC emissions.


Asunto(s)
Contaminación del Aire Interior , Contaminantes Ambientales , Radón , Contaminación del Aire Interior/análisis , Vivienda , Radón/análisis , Respiración Artificial , Ventilación
6.
Environ Microbiol ; 24(4): 1689-1702, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34347350

RESUMEN

Protists are abundant and play key trophic functions in soil. Documenting how their trophic contributions vary across large environmental gradients is essential to understand and predict how biogeochemical cycles will be impacted by global changes. Here, using amplicon sequencing of environmental DNA in open habitat soil from 161 locations spanning 2600 m of elevation in the Swiss Alps (from 400 to 3000 m), we found that, over the whole study area, soils are dominated by consumers, followed by parasites and phototrophs. In contrast, the proportion of these groups in local communities shows large variations in relation to elevation. While there is, on average, three times more consumers than parasites at low elevation (400-1000 m), this ratio increases to 12 at high elevation (2000-3000 m). This suggests that the decrease in protist host biomass and diversity toward mountains tops impact protist functional composition. Furthermore, the taxonomic composition of protists that infect animals was related to elevation while that of protists that infect plants or of protist consumers was related to soil pH. This study provides a first step to document and understand how soil protist functions vary along the elevational gradient.


Asunto(s)
Parásitos , Suelo , Animales , Biodiversidad , Eucariontes/genética , Suelo/parasitología , Microbiología del Suelo , Suiza
7.
Artículo en Inglés | MEDLINE | ID: mdl-34064382

RESUMEN

The lockdown due to the COVID-19 pandemic has led to various sudden changes in a large number of individuals. In response, the question of how individuals from different social and economic strata cope with those changes has arisen, as well as how much they have affected their mental well-being. Choosing strategies that cope with both the pandemic and the well-being of the population has also been a challenge for different governments. While a large number of studies have investigated the mental health of people from different populations during the COVID-19 pandemic, few have explored the number and type of changes experienced during lockdown by the general population, alongside their relationships with health-related quality of life (HRQoL). To fill this research gap, an observational cross-sectional study on those associations was conducted in the French-speaking part of the Swiss general population. Data were collected from 431 participants during the first four weeks of lockdown due to COVID-19. Multivariate regressions were used to identify the sociodemographic profile of the population that experienced different types and numbers of changes during this period, the association of those changes with the HRQoL-mental and physical-and infection beliefs, and the perception of the governmental measures. We show that the more changes people experienced, the lower their mental HRQoL; however, adherence to governmental measures has helped people to cope with the imposed changes, even though the number of unexpected and unwished changes have strained their mental HRQoL. The low-income population experienced financial difficulties and changes in their food intake more frequently, while dual-citizenship or non-Swiss individuals declared conflictual situations more frequently. Sport practice had a positive association with mental HRQoL; nevertheless, a decrease in sport practice was frequently reported, which correlated with a lower mental HRQoL. Risk perception of COVID-19 increased with lower physical HRQoL score, which supports the efficiency of governmental communication regarding the pandemic. Our results support that government measures should be accompanied by effective and targeted communication about the risk of infection, in order to encourage all strata of the general population to follow such measures and adapt to the changes without unduly affecting their mental health. The usage of such tools might help to reduce the impact of policy-imposed changes on the mental HRQoL of the general population, by inducing voluntary changes in informed and engaged populations.


Asunto(s)
COVID-19 , Calidad de Vida , Control de Enfermedades Transmisibles , Estudios Transversales , Humanos , Pandemias , SARS-CoV-2 , Suiza/epidemiología
8.
ISME J ; 15(9): 2547-2560, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33712699

RESUMEN

Soil bacteria are largely missing from future biodiversity assessments hindering comprehensive forecasts of ecosystem changes. Soil bacterial communities are expected to be more strongly driven by pH and less by other edaphic and climatic factors. Thus, alkalinisation or acidification along with climate change may influence soil bacteria, with subsequent influences for example on nutrient cycling and vegetation. Future forecasts of soil bacteria are therefore needed. We applied species distribution modelling (SDM) to quantify the roles of environmental factors in governing spatial abundance distribution of soil bacterial OTUs and to predict how future changes in these factors may change bacterial communities in a temperate mountain area. Models indicated that factors related to soil (especially pH), climate and/or topography explain and predict part of the abundance distribution of most OTUs. This supports the expectations that microorganisms have specific environmental requirements (i.e., niches/envelopes) and that they should accordingly respond to environmental changes. Our predictions indicate a stronger role of pH over other predictors (e.g. climate) in governing distributions of bacteria, yet the predicted future changes in bacteria communities are smaller than their current variation across space. The extent of bacterial community change predictions varies as a function of elevation, but in general, deviations from neutral soil pH are expected to decrease abundances and diversity of bacteria. Our findings highlight the need to account for edaphic changes, along with climate changes, in future forecasts of soil bacteria.


Asunto(s)
Ecosistema , Suelo , Bacterias/genética , Biodiversidad , Microbiología del Suelo
9.
BMJ Glob Health ; 5(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33087392

RESUMEN

INTRODUCTION: During pandemics, such as the SARS-CoV-2, filtering facepiece respirators plays an essential role in protecting healthcare personnel. The recycling of respirators is possible in case of critical shortage, but it raises the question of the effectiveness of decontamination as well as the performance of the reused respirators. METHOD: Disposable respirators were subjected to ultraviolet germicidal irradiation (UVGI) treatment at single or successive doses of 60 mJ/cm2 after a short drying cycle (30 min, 70°C). The germicidal efficacy of this treatment was tested by spiking respirators with two staphylococcal bacteriophages (vB_HSa_2002 and P66 phages). The respirator performance was investigated by the following parameters: particle penetration (NaCl aerosol, 10-300 nm), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry and mechanical tensile tests. RESULTS: No viable phage particles were recovered from any of the respirators after decontamination (log reduction in virus titre >3), and no reduction in chemical or physical properties (SEM, particle penetrations <5%-6%) were observed. Increasing the UVGI dose 10-fold led to chemical alterations of the respirator filtration media (FTIR) but did not affect the physical properties (particle penetration), which was unaltered even at 3000 mJ/cm2 (50 cycles). When respirators had been used by healthcare workers and undergone decontamination, they had particle penetration significantly greater than never donned respirators. CONCLUSION: This decontamination procedure is an attractive method for respirators in case of shortages during a SARS pandemic. A successful implementation requires a careful design and particle penetration performance control tests over the successive reuse cycles.


Asunto(s)
Descontaminación/métodos , Contaminación de Equipos/prevención & control , Equipo Reutilizado , Dispositivos de Protección Respiratoria , Rayos Ultravioleta , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/prevención & control , Análisis de Falla de Equipo , Humanos , Control de Infecciones/métodos , Ensayo de Materiales , Pandemias/prevención & control , Neumonía Viral/prevención & control , SARS-CoV-2
10.
Glob Chang Biol ; 26(12): 6715-6728, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32866994

RESUMEN

Assessing the degree to which climate explains the spatial distributions of different taxonomic and functional groups is essential for anticipating the effects of climate change on ecosystems. Most effort so far has focused on above-ground organisms, which offer only a partial view on the response of biodiversity to environmental gradients. Here including both above- and below-ground organisms, we quantified the degree of topoclimatic control on the occurrence patterns of >1,500 taxa and phylotypes along a c. 3,000 m elevation gradient, by fitting species distribution models. Higher model performances for animals and plants than for soil microbes (fungi, bacteria and protists) suggest that the direct influence of topoclimate is stronger on above-ground species than on below-ground microorganisms. Accordingly, direct climate change effects are predicted to be stronger for above-ground than for below-ground taxa, whereas factors expressing local soil microclimate and geochemistry are likely more important to explain and forecast the occurrence patterns of soil microbiota. Detailed mapping and future scenarios of soil microclimate and microhabitats, together with comparative studies of interacting and ecologically dependent above- and below-ground biota, are thus needed to understand and realistically forecast the future distribution of ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Microclima , Suelo , Microbiología del Suelo
11.
Artículo en Inglés | MEDLINE | ID: mdl-32650626

RESUMEN

The presence of growing fungi in the indoor environment has been associated with the development of respiratory problems such as asthma or allergic rhinitis, as well as the worsening of respiratory pathologies. Their proliferation indoors could be a result of water leakage or inadequate ventilation. Although the factors promoting mould growth have been widely investigated in traditional dwellings, little work has been done in energy efficient dwellings. Here, the effectiveness of ventilation type, i.e., natural or mechanical, in influencing mould development was estimated in 44 recent and 105 retrofitted energy efficient dwellings. Fungi growing on surfaces were investigated in the dwellings situated in rural, peri-urban, and urban regions of Switzerland. The presence of these fungi was also investigated in bedroom settled dust. Information on building characteristics and owners' lifestyle were collected. Significant associations were found with the level of urbanisation, the location of mouldy area in dwellings, and the diversity of fungal taxa. Dwellings in peri-urban zones showed the most frequent fungal contamination in the owners' bedroom and the highest diversity of fungal genera among dwellings. While the urbanisation level or the ventilation type favoured no specific genus, we found marked disparities in the diversity of fungi growing on surfaces in naturally ventilated versus mechanically ventilated dwellings. Aspergillus, in particular, was a frequent surface contaminant in bedrooms with natural ventilation, but not in those mechanically ventilated. We observed a strong association between fungal growth on surfaces and the number of fungal particles counted in the settled dust of owners' bedrooms. These results demonstrate the importance of ventilation systems in energy efficient dwellings in controlling fungal proliferation in living areas.


Asunto(s)
Contaminación del Aire Interior , Hongos , Urbanización , Ventilación , Polvo/análisis , Hongos/aislamiento & purificación , Vivienda , Suiza
12.
Indoor Air ; 30(3): 481-491, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32190933

RESUMEN

Exposure to elevated levels of certain volatile organic compounds (VOCs) in households has been linked to deleterious health effects. This study presents the first large-scale investigation of VOC levels in 169 energy-efficient dwellings in Switzerland. Through a combination of physical measurements and questionnaire surveys, we investigated the influence of diverse building characteristics on indoor VOCs. Among 74 detected compounds, carbonyls, alkanes, and alkenes were the most abundant. Median concentration levels of formaldehyde (14 µg/m3 ), TVOC (212 µg/m3 ), benzene (<0.1 µg/m3 ), and toluene (22 µg/m3 ) were below the upper exposure limits. Nonetheless, 90% and 50% of dwellings exceeded the chronic exposure limits for formaldehyde (9 µg/m3 ) and TVOC (200 µg/m3 ), respectively. There was a strong positive correlation among VOCs that likely originated from common sources. Dwellings built between 1950s and 1990s, and especially, those with attached garages had higher TVOC concentrations. Interior thermal retrofit of dwellings and absence of mechanical ventilation system were associated with elevated levels of formaldehyde, aromatics, and alkanes. Overall, energy-renovated homes had higher levels of certain VOCs compared with newly built homes. The results suggest that energy efficiency measures in dwellings should be accompanied by actions to mitigate VOC exposures as to avoid adverse health outcomes.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles/análisis , Suiza
13.
Artículo en Inglés | MEDLINE | ID: mdl-31269667

RESUMEN

Occupational exposure to grain dust is associated with both acute and chronic effects on the airways. However, the aetiology of these effects is not completely understood, mainly due to the complexity and variety of potentially causative agents to which workers are exposed during cereals process. In this study, we characterized the mycobiome during different steps of wheat processing-harvesting, grain unloading and straw handling-and compared it to mycobiomes of domestic environments-rural and urban. To do so, settled dust was collected at a six month interval for six weeks in the close proximity of 142 participants, 74 occupationally exposed to wheat dust-freshly harvested or stored-and 68 not occupationally exposed to it. Fungal community composition was determined in those samples by high-throughput sequencing of the primary fungal barcode marker internal transcribed spacer 1 (ITS1). The comparison of different mycobiomes revealed that fungal richness, as well as their composition, was much higher in the domestic environment than at the workplace. Furthermore, we found that the fungal community composition strongly differed between workplaces where workers handled freshly harvested wheat and those where they handled stored wheat. Indicator species for each exposed population were identified. Our results emphasize the complexity of exposure of grain workers and farmers and open new perspectives in the identification of the etiological factors responsible for the respiratory pathologies induced by wheat dust exposure.


Asunto(s)
Polvo/análisis , Manipulación de Alimentos/estadística & datos numéricos , Micobioma/fisiología , Exposición Profesional/análisis , Triticum/microbiología , Agricultores , Hongos , Humanos , Lugar de Trabajo/estadística & datos numéricos
14.
Front Microbiol ; 10: 656, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019495

RESUMEN

Archaeorhizomycetes, a widespread fungal class with a dominant presence in many soil environments, contains cryptic filamentous species forming plant-root associations whose role in terrestrial ecosystems remains unclear. Here, we apply a correlative approach to identify the abiotic and biotic environmental variables shaping the distribution of this fungal group. We used a DNA sequencing dataset containing Archaeorhizomycetes sequences and environmental variables from 103 sites, obtained through a random-stratified sampling in the Western Swiss Alps along a wide elevation gradient (>2,500 m). We observed that the relative abundance of Archaeorhizomycetes follows a "humped-shaped" curve. Fitted linear and quadratic generalized linear models revealed that both climatic (minimum temperature, precipitation sum, growing degree-days) and edaphic (carbon, hydrogen, organic carbon, aluminum oxide, and phyllosilicates) factors contribute to explaining the variation in Archaeorhizomycetes abundance. Furthermore, a network inference topology described significant co-abundance patterns between Archaeorhizomycetes and other saprotrophic and ectomycorrhizal fungal taxa. Overall, our results provide strong support to the hypothesis that Archaeorhizomycetes in this area have clear ecological requirements along wide, elevation-driven abiotic and biotic gradients. Additionally, correlations to soil redox parameters, particularly with phyllosilicates minerals, suggest Archaeorhizomycetes might be implied in biological rock weathering. Such soil taxa-environment studies along wide gradients are thus a useful complement to latitudinal field observations and culture-based approaches to uncover the ecological roles of cryptic soil organisms.

15.
Int Arch Occup Environ Health ; 91(6): 745-757, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29804141

RESUMEN

PURPOSE: The aim of this study was to understand the differential acute effects of two distinct wheat-related dusts, such as field or stored wheat dust handling, on workers' health and how those effects evolved at 6 month intervals. METHODS: Exposure, work-related symptoms, changes in lung function, and blood samples of 81 workers handling wheat and 61 controls were collected during the high exposure season and 6 months after. Specific IgG, IgE, and precipitins against 12 fungi isolated from wheat dust were titrated by enzyme-linked immunosorbent assay, dissociation-enhanced lanthanide fluorescence immunoassay, and electrosyneresis. The level of fungi was determined in the workers' environment. Levels of exhaled fraction of nitrogen monoxide (FENO) and total IgE were obtained. Exposure response associations were investigated by mixed logistic and linear regression models. RESULTS: The recent exposure to field wheat dust was associated with a higher prevalence for five of six self-reported airway symptoms and with a lower FENO than those in the control population. Exposure to stored wheat dust was only associated with cough. No acute impact of exposure on respiratory function was observed. Exposure to field wheat dust led to workers' sensitization against the three field fungi Aureobasidum, Cryptococcus, and Phoma, although exposure to storage wheat dust was associated with tolerance. The level of Ig remained stable 6 months after exposure. CONCLUSION: The clinical picture of workers exposed to field or storage wheat dust differed. The systematic characterization of the aerosol microbial profile may help to understand the reasons for those differences.


Asunto(s)
Enfermedades de los Trabajadores Agrícolas/fisiopatología , Contaminantes Ocupacionales del Aire/efectos adversos , Exposición Profesional/efectos adversos , Enfermedades Respiratorias/etiología , Enfermedades Respiratorias/fisiopatología , Triticum/efectos adversos , Adulto , Aerosoles/efectos adversos , Enfermedades de los Trabajadores Agrícolas/etiología , Antígenos Fúngicos/sangre , Polvo/análisis , Grano Comestible , Ensayo de Inmunoadsorción Enzimática , Femenino , Hongos , Humanos , Entrevistas como Asunto , Modelos Logísticos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Óxido Nítrico/análisis , Exposición Profesional/análisis , Pruebas de Función Respiratoria , Suiza
16.
Sci Rep ; 8(1): 5758, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636506

RESUMEN

Interactions between plants and bacteria in the non-rhizosphere soil are rarely assessed, because they are less direct and easily masked by confounding environmental factors. By studying plant vegetation alliances and soil bacterial community co-patterning in grassland soils in 100 sites across a heterogeneous mountain landscape in the western Swiss Alps, we obtained sufficient statistical power to disentangle common co-occurrences and weaker specific interactions. Plant alliances and soil bacterial communities tended to be synchronized in community turnover across the landscape, largely driven by common underlying environmental factors, such as soil pH or elevation. Certain alliances occurring in distinct, local, environmental conditions were characterized by co-occurring specialist plant and bacterial species, such as the Nardus stricta and Thermogemmatisporaceae. In contrast, some generalist taxa, like Anthoxanthum odoratum and 19 Acidobacteria species, spanned across multiple vegetation alliances. Meta-scale analyses of soil bacterial community composition and vegetation surveys, complemented with local edaphic measurements, can thus prove useful to identify the various types of plant-bacteria interactions and the environments in which they occur.


Asunto(s)
Bacterias , Pradera , Plantas/microbiología , Microbiología del Suelo , Suelo , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Fenómenos Fisiológicos de las Plantas
17.
Toxins (Basel) ; 9(11)2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-29068378

RESUMEN

The type B trichothecene mycotoxins deoxynivalenol (DON), nivalenol (NIV) and fusarenon-X (FX) are structurally related secondary metabolites frequently produced by Fusarium on wheat. Consequently, DON, NIV and FX contaminate wheat dusts, exposing grain workers to toxins by inhalation. Those trichothecenes at low, relevant, exposition concentrations have differential effects on intestinal cells, but whether such differences exist with respiratory cells is mostly unknown, while it is required to assess the combined risk of exposure to mycotoxins. The goal of the present study was to compare the effects of DON, NIV and FX alone or in combination on the viability and IL-6 and IL-8-inducing capacity of human epithelial cells representative of the respiratory tract: primary human airway epithelial cells of nasal (hAECN) and bronchial (hAECB) origin, and immortalized human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines. We report that A549 cells are particularly resistant to the cytotoxic effects of mycotoxins. FX is more toxic than DON and NIV for all epithelial cell types. Nasal and bronchial primary cells are more sensitive than bronchial and alveolar cell lines to combined mycotoxin mixtures at low concentrations, although they are less sensitive to mycotoxins alone. Interactions between mycotoxins at low concentrations are rarely additive and are observed only for DON/NIV and NIV/FX on hAECB cells and DON/NIV/FX on A549 cells. Most interactions at low mycotoxin concentrations are synergistic, antagonistic interactions being observed only for DON/FX on hAECB, DON/NIV on 16HBE14o- and NIV/FX on A549 cells. DON, NIV and FX induce, albeit at different levels, IL-6 and IL-8 release by all cell types. However, NIV and FX at concentrations of low cytotoxicity induce IL-6 release by hAECB and A549 cells, and IL-8 release by hAECN cells. Overall, these data suggest that combined exposure to mycotoxins at low concentrations have a stronger effect on primary nasal epithelial cells than on bronchial epithelial cells and activate different inflammatory pathways. This information is particularly relevant for future studies about the hazard of occupational exposure to mycotoxins by inhalation and its impact on the respiratory tract.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Sistema Respiratorio/citología , Tricotecenos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo
18.
Toxins (Basel) ; 8(12)2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27973454

RESUMEN

Type B trichotecens such as deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and zearalenone (ZEN) are mycotoxins contaminating wheat and wheat dust. Mycotoxins are toxic upon ingestion and considered potentially toxic when inhaled. Whereas dietary exposure to mycotoxins is controlled in food, data on occupational exposure by inhalation by grain workers are scarce. The objectives of this study were to determine the incidence of DON, 3-ADON, 15-ADON, NIV and ZEN in aerosols generated during grain harvesting and unloading and the risk of exposure of grain workers. Aerosols were collected during the threshing of 78 winter wheat fields and grain unloading of 59 grain lots in six grain terminals in the Vaud region (Switzerland). The samples represented the diversity of the winter wheat cultivar and of the farming system (88 treated with fungicides, 46 untreated). Using a HPLC MS/MS method developed to quantify mycotoxins in aerosols, we report that the mycotoxin content of aerosols was not affected by the wheat cultivars or farming system, but that the incidence of the mycotoxins differed between activities. While wheat harvesting generated on average 28, 20 and 1 ng·m-3 of DON, NIV and ZEN, respectively, grain unloading generated 53, 46 and 4 ng·m-3. Personal sampling revealed that working in a cab was an efficient protective measure. However, it was not sufficient to avoid chronic exposure to multiple mycotoxins. The most exposed activity was the cleaning, exposing workers to DON, NIV and ZEN at concentrations as high as 65, 59 and 3 ng·m-3. These data provide valuable information for future studies of mycotoxin toxicity at relevant concentrations on respiratory health.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Fusarium , Micotoxinas/análisis , Exposición Profesional/análisis , Triticum/química , Aerosoles , Monitoreo del Ambiente , Contaminación de Alimentos , Humanos , Suiza , Triticum/microbiología
19.
Appl Environ Microbiol ; 82(21): 6303-6316, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27542929

RESUMEN

Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions over short distances and are known to shelter a high biodiversity. Despite important progress, still little is known on bacterial diversity in mountain areas. Here, we investigated soil bacterial biogeography at more than 100 sampling sites randomly stratified across a 700-km2 area with 2,200-m elevation gradient in the western Swiss Alps. Bacterial grassland communities were highly diverse, with 12,741 total operational taxonomic units (OTUs) across 100 sites and an average of 2,918 OTUs per site. Bacterial community structure was correlated with local climatic, topographic, and soil physicochemical parameters with high statistical significance. We found pH (correlated with % CaO and % mineral carbon), hydrogen index (correlated with bulk gravimetric water content), and annual average number of frost days during the growing season to be among the groups of the most important environmental drivers of bacterial community structure. In contrast, bacterial community structure was only weakly stratified as a function of elevation. Contrasting patterns were discovered for individual bacterial taxa. Acidobacteria responded both positively and negatively to pH extremes. Various families within the Bacteroidetes responded to available phosphorus levels. Different verrucomicrobial groups responded to electrical conductivity, total organic carbon, water content, and mineral carbon contents. Alpine grassland bacterial communities are thus highly diverse, which is likely due to the large variety of different environmental conditions. These results shed new light on the biodiversity of mountain ecosystems, which were already identified as potentially fragile to anthropogenic influences and climate change. IMPORTANCE: This article addresses the question of how microbial communities in alpine regions are dependent on local climatic and soil physicochemical variables. We benefit from a unique 700-km2 study region in the western Swiss Alps region, which has been exhaustively studied for macro-organismal and fungal ecology, and for topoclimatic modeling of future ecological trends, but without taking into account soil bacterial diversity. Here, we present an in-depth biogeographical characterization of the bacterial community diversity in this alpine region across 100 randomly stratified sites, using 56 environmental variables. Our exhaustive sampling ensured the detection of ecological trends with high statistical robustness. Our data both confirm previously observed general trends and show many new detailed trends for a wide range of bacterial taxonomic groups and environmental parameters.


Asunto(s)
Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Pradera , Consorcios Microbianos , Microbiología del Suelo , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Acidobacteria/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/fisiología , Carbono , Cambio Climático , Ecosistema , Ambiente , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Concentración de Iones de Hidrógeno , Fósforo , ARN Ribosómico 16S , Estaciones del Año , Suelo/química , Suiza
20.
Appl Environ Microbiol ; 82(7): 2121-2131, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26826229

RESUMEN

Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities.


Asunto(s)
Contaminantes Atmosféricos/análisis , Polvo/análisis , Grano Comestible/microbiología , Hongos/aislamiento & purificación , Aerosoles/análisis , Microbiología del Aire , Biodiversidad , Hongos/clasificación , Hongos/genética , Humanos , Exposición Profesional , Filogenia , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...